Выбрать главу

Байесовский циферблат - это визуальное представление того, что известно как байесовские рассуждения. Мы имеем дело с неопределенностью, приписывая "предварительные вероятности" неопределенным событиям. Поскольку шансы за игровым столом Шевалье были справедливыми, предварительная вероятность того, что каждый игрок выиграет, равнялась 50%. Но затем игроки постоянно обновляют свои предварительные вероятности в свете новой информации. Первый ход циферблата фиксирует вероятность того, что А выиграет матч, учитывая, что он выиграл первую партию, а затем корректируется на вероятность того, что он выиграет в целом при условии, что А выиграл первую партию, а Б выиграл вторую , и так далее по ходу вечера. .

 

Зал

Задача Монти Холла - это знаменитая иллюстрация силы теоремы Байеса, в основе которой лежит американская викторина 1960-х годов "Давайте заключим сделку", в которой участники разыгрывали призы, спрятанные за занавесками, и названная в честь ее ведущего. Изначально загадка была предложена американским статистиком Стивеном Селвином и впоследствии стала предметом обширной переписки и литературы. Участнику показывают три коробки, в одну из которых Монти положил ключи от автомобиля, который участник выиграет, если выберет эту коробку. Две другие коробки пусты. После того как участник сделает свой выбор, Монти открывает одну из других коробок, которая пуста. Он предлагает выбор. Участник может остаться с первоначальным выбором или перейти в другую коробку.

Интуитивный ответ заключается в том, что изначально ключи с равной вероятностью находились в каждом из трех ящиков, а теперь, когда на выбор осталось только два ящика, они с равной вероятностью окажутся в любом из оставшихся. Поэтому нет причин для переключения. Но необученное суждение ошибочно. Монти знает, в каком ящике находятся ключи от машины. Если ключи находятся в том ящике, который вы выбрали изначально - вероятность один к трем - не имеет значения, какой из остальных ящиков он откроет. Но если вы сделали неправильный выбор - вероятность два из трех - Монти должен быть осторожен и выбрать единственный оставшийся ящик, который пуст, и ключи будут в том ящике, который он решит не открывать. Поэтому более вероятно (с вероятностью два из трех), что ключи находятся в этой неоткрытой коробке, чем в коробке, которую вы выбрали (с вероятностью один из трех). Монти неосознанно дал вам важную информацию, которая говорит вам, что вероятность того, что ключи находятся в другом ящике, составляет две трети, и поэтому вы должны поменяться.

Если вам трудно в это поверить - а почти все верят, - то представьте, что коробок не три, а сто. Как только вы сделали свой выбор, Монти открывает девяносто восемь коробок, и все они пусты. Все еще возможно, что ключи от машины находятся в выбранной вами коробке. Но гораздо более вероятно, что они находятся в одной оставшейся коробке, которую Монти не открыл. А если вы все еще не убеждены, есть несколько сайтов, на которых вы можете сыграть в игру Монти Холла против компьютера. Вскоре вы поймете, что лучше поменяться. Проблема очков и анализ шоу Монти Холла являются иллюстрациями ценности вероятностной математики. Каждая из них предлагает совершенно убедительные аргументы в пользу неожиданных результатов.

 

 

Принцип безразличия

Решения проблемы очков и игры Монти Холла опираются на то, что стало известно как принцип безразличия - если у нас нет причин считать одну вещь более вероятной, чем другую, мы можем приписать каждой из них равные вероятности. Мы предположили, что герцог и маркиз с равной вероятностью выиграют каждую из оставшихся партий, и, возможно, для этого нам пригодится частотное распределение результатов аналогичных партий в прошлом. В задаче Монти Холла мы решили, что если есть три одинаковых ящика, то вероятность того, что ключи находятся в любом из них, равна одной трети.