Чтобы сделать заявление о вероятности в реальном мире, необходимо сложить вероятность, вытекающую из самой модели, с вероятностью того, что сама модель истинна. И нет никакого способа узнать, является ли модель истинной; более того, трудно даже придать значение понятию "вероятность того, что представление мира является миром". Эта неспособность отличить "невезение" - маловероятное событие в рамках модели - от неудачи самой модели широко распространена, как мы увидим в последующих главах. Мы будем называть эту проблему сбоя модели проблемой Виниара, в честь бывшего руководителя Goldman Sachs.
Глава 5. Забытый спор
В начале двадцатого века применение теории вероятности было хорошо известно для понимания азартных игр, таких как карты, рулетка или Let's Make a Deal. Теория также доказала свою ценность при анализе данных, полученных в результате более или менее стационарного процесса, такого как смертность, для которого были доступны обширные данные о частоте. Когда государства и частные организации, такие как страховщики, начали записывать информацию в систематической форме, отпала необходимость, как это делал Джон Граунт, рыться в могильных плитах в поисках знаний. А когда процессы, порождающие результаты, были стационарными и хорошо изученными, например, , как подбрасывание честной монеты, частотные распределения можно было вывести из вероятностных рассуждений.
С самых первых дней появления вероятностного мышления предпринимались попытки применить такие рассуждения за пределами области наблюдаемых частот азартных игр и человеческой смертности, использовать вероятностный язык и математику для описания уникальных событий, таких как астероид Юкатан или рейд бин Ладена. И с самых первых дней появления вероятностного мышления такое расширение было сопряжено с сопротивлением. Противники расширения долгое время одерживали верх. В своей "Системе логики", написанной в 1843 году , британский философ Джон Стюарт Милль критиковал французского математика Пьера-Симона Лапласа за применение теории вероятности "к вещам, о которых мы совершенно ничего не знаем". Другой французский математик, Жозеф Бертран, пошел дальше. Он осудил своих соотечественников за абсурдные предположения при применении теории вероятности к проблемам, не относящимся к области азартных игр. Мы верим, что солнце взойдет завтра, сказал он, благодаря "открытию астрономических законов, а не повторному успеху в той же азартной игре". Даже эта вера зависит от того, что астрономические законы остаются неподвижными. Если мы не можем полагаться на стабильность таких законов, тогда невозможно использовать прошлые частоты для вывода вероятностей будущих событий. Бертран помнил о том, что Дэвид Юм написал более чем столетием ранее: "То, что солнце завтра не взойдет, является не менее понятным предложением и не влечет за собой большего противоречия, чем утверждение, что оно взойдет. Поэтому мы тщетно пытаемся доказать его ложность". Возможно, именно в ответ на знаменитую формулировку проблемы индукции нерелигиозным Юмом преподобный Байес взял в руки перо, чтобы описать условные вероятности и предложить делать выводы из данных, даже если глубинные процессы не до конца понятны.
Субъективные вероятности
К концу девятнадцатого и началу двадцатого века развитие математики вероятности такими великими статистиками, как Р. У. Фишер, Ежи Нейман и У. Дж. Госсетт, создало настолько мощный корпус понимания и знаний, что трудно было противостоять давлению, направленному на расширение его применения. Поэтому некоторые пользователи вероятностных рассуждений стремились применить их к уникальным событиям - таким, как результат Кентуккийского дерби, - которые не были результатом какого-либо стационарного процесса. Или использовать вероятности для навигации по широкой неопределенности, такой как риски Goldman Sachs. И это было необходимо для того, чтобы байесовские рассуждения нашли широкое применение за пределами игрового зала.
Если я считаю, что Доббин с большой вероятностью выиграет Кентукки Дерби, я могу сказать, что вероятность того, что Доббин первым пройдет мимо победного столба, равна 0,9. Что означает это утверждение? Одна из интерпретаций заключается в том, что если бы скачки проводились сто раз при одинаковых погодных условиях и состоянии дорожки, с точно такими же бегунами и наездниками, то Доббин победил бы в девяноста случаях. Но в любой год Кентукки Дерби проводится только один раз, а в предыдущих и последующих скачках будут разные бегуны и наездники, разные условия на дорожке и разные толпы, подбадривающие своих фаворитов. Поэтому утверждение "вероятность победы Доббина составляет 0,9" не является утверждением о частоте, утверждением о том, что Доббин выиграет скачки в 90% случаев, когда проводятся скачки Кентукки Дерби; это утверждение о вере говорящего в то, что Доббин является сильным соперником.