R = R1∙Rвн/(R1 + Rвн) = R1/(1 + R1/Rвн) (2.14)
Последнее выражение в формуле (2.14) мы получили, разделив числитель и знаменатель дроби на Rвн. Из формулы следует: чем больше сопротивление вольтметра Rвн по сравнению с сопротивлением резистора R1, тем меньше отличается их общее сопротивление R от сопротивления резистора R1 и, следовательно, вольтметр вносит меньше искажений. Следовательно, вольтметр должен иметь большое сопротивление. Для этого последовательно с гальванометром включают дополнительный резистор Rд (рис. 2.26), имеющий сопротивление несколько килоом, чтобы общее сопротивление R = Rвн + Rд было как минимум на порядок (т. е. в 10 раз) больше сопротивления резистора R1.
В этом случае вносимым сопротивлением вольтметра можно пренебречь. Действительно, в этом случае R = R1/(1 + R1/Rвн) = R1/(1 + 0,1) = R1/1,1 ~= R1.
Рис. 2.26. Из которого видно, почему увеличивается входное сопротивление вольтметра с увеличением сопротивления добавочного резистора
• Рассмотрим пример. Предположим, что в цепи имеются два резистора сопротивлением по 10 кОм каждый и включены они последовательно (рис. 2.27, а). На зажимы ХР1 и ХР2 подано напряжение 10 В. Вы хотите измерить напряжение на резисторе R1 вольтметром, имеющим сопротивление Rвн = 10 кОм.
Рис. 2.27. Поясняющий влияние входного сопротивления вольтметра на режим работы электрической цепи (общее сопротивление участка цепи «резистор-вольтметр» всегда меньше сопротивления резистора, к которому подключен вольтметр.)
При подключении вольтметра к резистору R1 (рис. 2.27, б) их общее сопротивление R0 станет равным:
R0 = Rвн∙R1/(Rвн + R1) = 10∙10/(10 + 10) = 5 кОм,
а напряжение на резисторе R1 изменится (уменьшится). Покажем это.
Напряжение на резисторе R1 до подключения вольтметра равно:
U1 = I1∙R1 = [U/(R1 + R2)]∙R1 = [10/(10 + 10)∙10 = 5 B.
Напряжение на R1 после подключения вольтметра:
U1 = I1∙R0 = (U/(R0 + R2)]∙R0 = [10/(5000 + 10000)]∙5000 = [10/15000]∙5000 = 10/3 = 3,33 B.
Здесь R0+ R2 — общее сопротивление цепи при подключенном вольтметре. Такое же напряжение покажет и вольтметр.
После подключения вольтметра напряжение на R1 уменьшилось с 5 В до 3,33 В, а это существенно. Чтобы вольтметр не искажал режим цепи, его сопротивление должно быть хотя бы на порядок, т. е. в 10 раз больше сопротивления R1, т. е. сопротивление вольтметра должно быть 100 00 Ом (100 кОм). Тогда сопротивление параллельной цепи вольтметр Rвн и резистор R1 будет равно:
R01 = Rвн∙R1/(Rвн + R1) = 100∙10/(100+10) ~= 9,1 кОм,
а падение напряжения на нем:
U12 = I1∙R01 = [U/(R01 + R2)]∙R01 = [10/(9,1 + 10)]∙9,1 = 10 9,1/19,1 = 4,76 B.
Теперь напряжение на резисторе R1 при подключении вольтметра меньше напряжения на резисторе R1 до подключения вольтметра на небольшую величину, всего на 5 В — 4,76 В = 0,24 В. А в случае, когда вольтметр имел сопротивление Rвн = 10 кОм, это напряжение отличалось на 5 В — 3,33 В = 1,66 В.
А теперь познакомимся с устройством омметра, прибором для измерения сопротивления резисторов и электрических цепей. Прибор позволяет также «прозвонить» катушку индуктивности, обмотки трансформатора и т. д., чтобы убедиться, что витки обмоток не замкнуты. На рис. 2.28 приведена схема омметра.
Рис. 2.28. Принципиальная схема простого омметра
Для его изготовления потребуется микроамперметр с током полного отклонения, например 100 мкА, два резистора — постоянный и переменный, источник питания на 4,5 В — батарея 3336Л. Если накоротко замкнуть гнезда XS1 и XS2 проволочной перемычкой, то по цепи потечет ток, а стрелка микроамперметра отклонится на несколько делений шкалы. Вращая ось переменного резистора R2, устанавливают стрелку индикатора на конечное деление шкалы — 100 мкА, это условный нуль шкалы омметра. А теперь следует убрать перемычку между гнездами XS1 и XS2 и подключить к ним выводы резистора, например, сопротивлением 3 кОм. Стрелка индикатора отклонится и остановится вблизи условного нуля шкалы омметра (немного не дойдет до деления 100 мкА).