Большая притягательная сила обусловливается тем, что нестабильный ген уходит со своего места не совсем, а оставляет в ячейке, где находился, по образному выражению Герасимовой, "липкий хвост". Как выглядит этот "липкий хвост", пока не установлено — размеры гена не позволяют разглядеть его даже в электронный микроскоп, но поведение других нестабильных генов, которые попадают при очередных передвижках не просто куда-нибудь, а, как правило, именно в места, оставленные предшественниками, доказывает, что там их что-то привлекает.
Ну а приклеившись, встроившись в геном клетки, новые гены (или вирусы?) способны оказать определенное воздействие на наследственность. В каких-то случаях эти изменения оказываются неблагоприятными для жизни и здоровья, в других, наоборот, полезными и благоприятными. Но это уже естественный отбор отделит первых от вторых. Если такое произойдет с хромосомой соматической клетки, любые изменения умрут вместе с организмом, если с хромосомой половых клеток — передадутся по наследству.
Очевидно, первопричиной "встряхивания каталожного ящика" в подобной ситуации являются не вирусы, они просто в нужный момент находятся под рукой. Хотя, возможно, в будущем удастся доказать участие вирусов в механизме "встряхивания". Но даже вот это — находиться в нужное время в нужном месте — очень важно.
Конечно, можно, даже не слишком усердствуя, увязать между собой для объяснения эволюции сразу три гипотезы — "урановую" С. Г. Неручева, нестабильных генов и "липких хвостов" Т. И. Герасимовой и вирусную. Логично предположить, что повышенное радиоактивное облучение живых существ, во-первых, заставляет хромосомы "встряхиваться", а во-вторых, подавляя иммунитет, облегчает проникновение вирусов внутрь организма...
Ну а если это предположение не нравится, если у кого-то все еще есть сомнения в позитивной роли вирусов в биосфере, можно предложить еще одну гипотезу. Она принципиально способна сосуществовать с изложенной выше, но может быть и самостоятельным механизмом. Но прежде несколько вступительных фраз.
Каждый организм, начиная от одноклеточных инфузорий и кончая многотонным китом, — живая крепость, бастионы и равелины которой хуже ли, лучше ли позволяют достаточно долго и успешно противостоять различным неблагоприятным факторам внешней среды. Среди этих факторов и возбудители инфекционных заболеваний — бактерии и вирусы.
Конечно, по мере усложнения организации жизни вооружение крепости совершенствуется и оттачивается. И если говорить о высших животных, о млекопитающих, к которым относится и человек, то надо признать, что оно гораздо мощней и надежней, чем у какой-нибудь амебы.
Сегодня о механизмах защиты известно многое, но, бесспорно, не все. По крайней мере, о защитных функциях третьего элемента крови — тромбоцитах, существует только гипотеза. Гипотеза эта разработана доктором биологических наук, специалистом в области радиобиологии и электронной микроскопии Н. В. Лысогоровым, прожившим недолгую, но насыщенную жизнь (1926 — 1985). Разработки Лысогорова касаются не только функций тромбоцитов как противовирусного фактора, они во многом по-новому заставляют взглянуть вообще на эти форменные элементы крови, но, экономя место, про другие их функции мы говорить не будем.
Итак, нас интересует лишь несколько частностей. Например, форма и размеры тромбоцитов. Находясь в кровеносном русле, в составе жидкой крови, тромбоциты не превышают в диаметре половину микрона. А вот распластавшись на какой-нибудь поверхности (стенке кровеносного сосуда, лабораторном стекле), они закрывают собой площадь в 2 — 5 квадратных микрон. Очень интересно, что тромбоциты, несмотря на название (окончание "цит" — от греческого "цитос" — "клетка"), фактически клетками не являются: у них нет ядра, нет митохондрий. Их содержимое — однородная, очень тонкозернистая цитоплазма.
Интересен их жизненный цикл: кровяная пластинка (еще одно, более правильное название тромбоцита) выбрасывается из породившей ее клетки костного мозга вполне зрелым образованием, в перспективе у нее только старость и гибель. Все остальные фазы: рождение, детство, юность прошли, когда она была еще частичкой материнской клетки. Это очень важный момент: тромбоцит в кровеносном русле не боится вирусов. Никаких. Ведь вирус может разрушить клетку, только внедрившись в ядро и задавая свои задачи генетическому аппарату. Если нет ядра, нет генетического аппарата, повредить клетке вирус не может.