Этот подсказанный нам природой способ преобразования энергии солнечных лучей в электрическую энергию пока, однако, с высоким КПД не воспроизведен в неживых искусственных химических системах.
Иногда говорят: «Как все совершенно в природе и как несовершенно в технике…» Так ли это?
Перед нами — обыкновенный бык. Это еще пока основной «двигатель» во многих слаборазвитых странах. Посмотрим на эту «машину» глазами инженера.
Велик ли его КПД? У растения—1 %, а у быка?.. Бык пожирает зелень и на пахоте отдает землепашцу всего 2–3 % от той энергии, что была в съеденной зелени. 2–3 % от 1 %! Это 0,05 %. Иными словами, бык пожирает почти все растения, которые помогает вырастить. Нет, нам не нужны двигатели с КПД, равным нулю…
Физики сумели найти лучшие пути. И даже не один, а несколько.
Первый был открыт еще в 1821 году немецким ученым Т. Зеебеком. Этот ученый установил, что если спаять концы двух проволок из разных металлов, а затем этот спай нагреть, то по проволочкам пойдет электрический ток. Мы обычно называем теперь такой ток термоэлектричеством, а устройство из двух проволочек — термоэлементом.
Во времена Зеебека коэффициент полезного действия термоэлементов измерялся десятыми и сотыми долями процента. Однако в последние годы его удалось поднять до 7 процентов. Вспомним, что это предельный практически достигнутый КПД паровоза. На перспективность такого метода преобразования солнечной энергии в электроэнергию еще в 1924 году указывал академик А. Ф. Иоффе. И действительно, термоэлектрогенераторы уже вышли из стен лаборатории Института полупроводников АН СССР, нашли применение в быту. В скольких селениях нашей Родины, в которые из-за их отдаленности еще не дотянулись линии электропередачи, ныне работают термоэлектрогенераторы, надеваемые в виде абажура на керосиновую лампу или поставленные на керосинку. Вырабатываемый ими электрический ток питает радиоприемники.
Такие батареи термоэлектрогенераторов могут также обогреваться солнечными лучами и вырабатывать электроэнергию. Мощность, даваемая ими, будет тем больше, чем большее количество лучистой энергии в единицу времени будет сконцентрировано на них. Сейчас мы можем сказать, что скоро этого типа устройства будут рентабельными. Солнечный термоэлектрогенератор мощностью 40 ватт, сконструированный в гелиолаборатории Энергетического института АН СССР, был опробован еще в 1955 году.
Второй путь был предложен в 1888 году русским ученым А. Г. Столетовым, сконструировавшим первый фотоэлемент, подробно изучившим фотоэлектрические явления. Суть этих явлений заключается в том, что под действием лучей света в некоторых веществах появляется электрический ток, энергия световых лучей превращается в электрическую энергию.
На первых порах КПД этого превращения тоже был очень мал. Еще в 1953 году считали, что он вряд ли будет превосходить 0,6 процента. А уже в 1954 году кремниевые фотоэлементы позволили осуществлять такое превращение с КПД, равным 6 процентам. В 1955 году он достиг 11 процентов. Такие фотоэлементы сейчас производятся в СССР, США, ФРГ… Есть основания предполагать, что их КПД можно «дотянуть» до 15–20 процентов.
Наверное, не надо добавлять, что эти-то вот фотоэлектрические превращения наряду с термоэлектрическими и являются перспективными для преобразования энергии солнечных лучей в электричество. Тоненьким пластинкам полупроводников, в которых возникает порождаемый солнечными лучами поток электронов, суждено заменить громоздкий, неудобный комплекс устройств, состоящий из парового котла, паровой турбины электрогенератора, конденсатора, насосных установок и т. д.
Мы говорили, что даже при КПД, равном 10 процентам, уже целесообразно начинать сооружение гигантских гелиоэлектростанций, покрывая пластинками фотоэлементов гектары и квадратные километры среднеазиатских пустынь. В чем же дело? Ведь такое превращение уже достигнуто. Перспективы дальнейших работ в этой области блистательны. Почему же еще не запланированы постройки этих электростанций в наших планах?