Выбрать главу

Надо, во всех случаях надо, что бы ни создал инженер — самолет или паровой котел, гидроэлектростанцию или гидравлический пресс, автомобиль или телевизор, — важнейшей характеристикой машины считать отношение веса ее к единице производительности. И только если это отношение оказывается ниже, чем у аналогичных уже существующих машин, считать машину новым словом в технике… Но мы отвлеклись…

Как же согласовать теоретическую прочность металла с ее практической прочностью? Почему между ними существует такой гигантский разрыв? Почему еще невозможно осуществление уэллсовской лестницы?

Лет двадцать— двадцать пять назад два ученых — английский физик Тэйлор и член-корреспондент нашей Академии наук Я. Н. Френкель — независимо друг от друга пришли примерно к одинаковому мнению по этому вопросу. «В металле, его кристаллической структуре, есть определенные несовершенства, структура их действительная не соответствует теоретической. Эти несовершенства и являются причиной их низкой прочности». Примерно таким был их вывод.

Попробуем разъяснить это следующим примером. Представьте себе комнату, заполненную футбольными мячами так, что их центры образуют вершины куба. Допустим, что мячи будут лежать не строго равномерно: в их расположении будут пропуски, места смещений и другие искажения точно математической укладки. Видимо, нечто подобное происходит и в кристаллической решетке металлов. В большинстве случаев металлы кристаллизируются в кубической системе, то есть атомы располагаются по углам куба. Определенные несовершенства в их укладке и вызывают катастрофическое падение прочности металла.

Сколько споров было вокруг этой гипотезы! Одни ее признавали, другие считали ересью. Но факты неумолимо подтверждали ее соответствие истине. Прежде всего совпала расчетная прочность металла, — если учесть имеющиеся в нем определенного вида несовершенства, их назвали дислокациями, — с той прочностью, которую мы имели в действительности. А затем этот затянувшийся спор в науке судом фактов, как всегда, был решен в пользу истины. Огромную роль при этом сыграли свидетельские показания электронного микроскопа. Дислокации, которые объявлялись несуществующими, а гипотеза о их существовании — слишком искусственной, удалось увидеть и даже заснять на кинопленку.

Дальнейшие, исследования выявили примерно такую картину. Дислокации получаются в металле в первые же мгновения его затвердевания з литейной форме. Оказывается, кристаллизация из расплава с образованием дислокаций идет с меньшей затратой энергии, чем без дислокаций. А затем, при дальнейшей обработке — ковке, прокатке, волочении металла — мы увеличиваем количество этих дислокаций.

Интересна и еще одна особенность. Минимальную прочность металл имеет при совершенно определенном количестве этих дислокаций. Если мы увеличим их количество — это происходит, например, при прокатке, — металл становится прочнее. Чем больше дислокаций — тем прочнее металл. Вот по этому пути — увеличения числа дислокаций — и шли наука и практика металлургии в последние десятилетия, не предполагая о существовании дислокаций.

Но от этого минимума прочности есть и другой путь к упрочению металла — уменьшение числа дислокаций. И этот путь гораздо эффективнее. Именно он может обеспечить нам создание материалов невероятной прочности.

Кстати, первые образцы такого материала без дислокаций уже получены. Правда, это пока лабораторные образцы, крохотные столбики чистого железа, выдерживающие растяжение не в 20 килограммов на квадратный миллиметр, как наше сегодняшнее «чистое» железо, а 1400 килограммов на квадратный миллиметр. Это почти фантастическая прочность, приближающаяся уже к той, которую предсказывают физики-теоретики.

Получают такой металл очень сложным методом. В специальной установке создается облако парообразного хлористого железа, нагретого до определенной температуры. Затем железо восстанавливается водородом. Водород соединяется с хлором, а атомы железа кристаллизуются на охлаждаемой пластинке в виде длинных кристаллов толщиной всего в несколько микронов. Эти нитеобразные кристаллы ученые назвали «усами».

Перед нами сейчас стоит задача — найти промышленную, применимую в заводских условиях, технологию изготовления такого бездислокационного металла. Если бы это удалось и мы начали выпускать большие количества такого металла, это бы было равносильно удвоению, удесятерению, увеличению в сотни раз мощности нашей металлургической промышленности. Инженеры XXI века, используя такой металл, будут расходовать его на тех же сооружениях в 10 и 100 раз меньше, чем расходуем мы сегод-нЯг Появятся кружевные мосты и невесомые самолеты, о которых сегодня уже имеют право мечтать не только фантасты, но и ученые,