Выбрать главу

Применение робототехники стимулируется и другими возможностями микроэлектроники, что способствует осуществлению дальнейшей автоматизации производственных процессов. В качестве примеров можно назвать компьютизированные производственные процессы и компьютизированное конструирование, ведущее к рационализации подготовительных производственных процессов. Тем самым появляется возможность осуществления сплошной автоматизации.

Работа конструкторов и технологов направлена на достижение эффективного взаимодействия человека и ЭВМ. Отдельные шаги в процессе конструирования и технологической подготовки производства делаются при помощи ЭВМ, которые разрабатывают для этого соответствующую структуру данных. Накопленные в ЭВМ для процесса конструирования данные и чертежи, а также соответствующие модели могут многократно комбинироваться и подвергаться последующей обработке. Все это предоставляет конструкторам и технологам широкие возможности. В ГДР уже добились значительных успехов по осуществлению рационализации в станкостроении, автомобильной промышленности, электротехнике и электронике, текстильной и обувной промышленности.

Специалист, работающий за конструкторским столом, оснащенным ЭВМ, кроме считавшихся ранее обычными видов чертежного оборудования сегодня располагает:

черно-белым дисплеем с буквенно-цифровым изображением и экраном высокого разрешения для изображения деталей чертежей, графиков и т. п.;

световым карандашом, при помощи которого можно «чертить» непосредственно по экрану;

приспособлениями для фиксирования позиций на экране;

устройствами для ввода текста, чертежей или схем;

устройством печати и автоматического вычерчивания, так называемым графопостроителем, для вывода информации и чертежей на бумагу.

Основной рабочий орган на этом рабочем месте — блок ЭВМ, состоящий из микроэлектронных элементов. База данных в ЭВМ содержит частные модели широко применяемых фасонных элементов для изготавливаемых деталей. Поэтому большая часть чертежа может быть по желанию конструктора составлена электронно-вычислительной машиной за несколько минут и — если в этом есть необходимость — выдана в готовом виде. Затем с помощью элементарных операций (например, проведение линий с использованием светового карандаша) конструктор добавляет те специфические особенности, которых нет в памяти ЭВМ. После ввода технических данных для процесса изготовления (сведения о выбранном материале и т. п.) ЭВМ автоматически вычисляет необходимые величины, например массу, объем и момент инерции. Точно так же ЭВМ вычисляет необходимые данные для изготовления детали на станке ЧПУ. Комплексные проблемы организации труда, возникающие в гибкой производственной системе, в значительной степени могут быть решены при помощи подобных автоматизированных рабочих мест технологов. Найденные при помощи ЭВМ решения помогают эффективному взаимодействию всех элементов гибкой производственной системы — станков, промышленных роботов, магазинов, транспортирующих систем и т. п., — которые в свою очередь частично управляются собственными ЭВМ. Таким образом в рамках гибкой производственной системы возникает иерархическая система обработки информации, в которой ЭВМ принимают решения о том, где, когда и что должно производиться.

Разнообразные промышленные роботы, рабочие места для конструкторов, оснащенные ЭВМ и дисплеями, проектирование, технология и процесс производства, автоматизированные блоки производственного и монтажного процессов гибкого применения, системы по резервированию места для проезда и автоматы для продажи билетов на транспорте, современное оборудование для сберегательных касс и банков — все эти устройства и системы немыслимы без микроэлектроники, без информационной техники и переработки информации. Во всех сферах общественной жизни, не только в промышленности объем применения микроэлектроники постоянно растет. По оценкам экспертов, к 2000 г. он увеличится по меньшей мере в 3 раза по сравнению с современным уровнем. И если раньше промышленный уровень страны определялся количеством стали на душу населения, то теперь он зависит и от количества применяемой микроэлектроники.

На пути к созданию автоматизированных предприятий

Промышленные роботы — это функциональные элементы производства, которые конструируются и создаются человеком на основе все более глубокого понимания законов природы. Их применение идет по трем основным направлениям — загрузочные роботы для манипулирования с обрабатываемыми деталями, укладка в штабеля и размещения в магазинах, а также для транспортирования и упаковки; роботы для манипулирования с инструментом (сварки, шихтования, пескоструйной очистки, удаления жировых загрязнений, монтажных работ, процесса литья и прочих подобных технологических процессов); монтажные роботы на сенсорах для сортировки изделий и деталей и для их точной компоновки.