Выбрать главу

Прежде всего необходимо знать, как действует на организм радиация. С одной стороны, она может непосредственно поражать самого человека, вызывая ожоги, разрушение костного мозга с последующей тяжелой формой анемии, рак кожи и кровотворных тканей (лейкемию) и смерть от лучевой болезни. Эти заболевания зарегистрированы у большого числа людей, находившихся в зоне действия поражающей радиации от взрыва атомных бомб в Хиросиме и Нагасаки. Случаи заболеваний лейкемией значительно возросли в связи с участившимися испытаниями водородных бомб.

Но от непосредственного воздействия радиации, если только она не рассеяна по поверхности земли, можно защититься. Работающих на атомных электростанциях и с рентгеновским оборудованием можно защитить даже от самых малых доз облучения.

Совершенно иную картину дает второй тип поражающего воздействия радиации. На частоте мутаций в половых клетках, еще способных дать начало будущим поколениям, скажется любое количество дополнительной радиации, попадающей на яичники или семенники. Нет такой дозы, о которой можно было бы сказать: это допустимый максимум. Как же сказывается на человеке (или любом другом организме) увеличение частоты мутаций? Прежде всего участились случаи рождения детей с серьезными дефектами и нарушениями — это наиболее очевидное следствие повреждения наследственного материала. Ясно, что уже само по себе это нежелательно. Вряд ли мутации увеличат число людей с выдающимися способностями — мы ведь отмечали, что большинство мутантных генов неблагоприятны. Но имеются и другие соображения. Скорость мутирования в обычных условиях (то есть «естественные» частоты мутаций) можно рассматривать как результат естественного отбора. Естественные частоты мутаций как бы создают равновесие между чрезмерной устойчивостью (консервативностью) наследственности, с одной стороны, и ее неустойчивостью, или изменчивостью, которая вызывает большое количество дефектов и даже приводит к стерильности, — с другой. Мы пока не вправе вмешиваться в механизм поддержания этого равновесия, так как до сих пор плохо его знаем (равно как и генетику человека в целом).

Практическое применение менделевской генетики

Несомненно, наибольшее применение менделевская генетика находит в животноводстве и растениеводстве. Правда, ее можно приложить и к человеку, но здесь возможности ее ограниченны. Предположим, мужчина или женщина перед вступлением в брак хотели бы знать, могут ли у их детей появиться какие-либо нежелательные признаки. Как мы уже отмечали, генетическая конституция предрасполагает к развитию туберкулеза и некоторых форм рака. Но роль генетических факторов в обоих случаях слишком мала, и вряд ли стоит принимать их во внимание при решении вопроса о браке. Если даже, например, от туберкулеза или рака умер близкий родственник жениха или невесты, это не должно послужить причиной для беспокойства, тем более отказа от брака. Ниже мы рассмотрим вопрос о наследовании такого типа факторов более подробно.

И все-таки некоторые заболевания самым непосредственным образом генетически детерминированы. С одним примером наследования подобных заболеваний мы уже знакомы — это гемофилия, другие будут разбираться в гл. 7. Наши познания в области генетики человеческих дефектов уже настолько обширны, что иногда позволяют дать весьма полезную информацию супругам, желающим иметь детей. Однако размеры и тематика книги не позволяют нам подробно остановиться на этом вопросе.

Рассмотрим только особый случай — браки между двоюродными братьями и сестрами. Этот вопрос интересует как людей, вступающих в брак, так и общество в целом: не появятся ли в результате брака между близкими родственниками дефективные дети? Ответить на это невозможно, так как опасность в каждом конкретном случае исходит от рецессивно наследуемых признаков, а мы, как правило (за исключением признаков, сцепленных с полом), не можем установить присутствие рецессивного гена в гетерозиготном состоянии, не вызывающем развития дефекта. Если гены, обусловливающие определенный дефект, у брата и сестры одинаковы, то весьма возможно, что один из четырех (то есть 25 %) их детей родится с дефектом.

Необходимо подчеркнуть, что в огромном большинстве браков между двоюродными братьями и сестрами вообще не бывает дефективных детей. Но мы ведь знаем, что есть гены, которые вызывают развитие дефектов, и вероятность обладания одинаковыми рецессивными генами у близких родственников, кузенов, бóльшая, чем у совершенно не связанных узами родства пар. Поэтому и вероятность появления дефективных детей у них больше.

Однако это обстоятельство не удерживает и не должно удерживать двоюродных братьев и сестер от вступления в брак, за исключением тех случаев, когда их родственники имеют какой-либо дефект, определяемый рецессивным геном. Это может быть тяжелое заболевание кожи, так называемая пигментная ксеродерма, или один из видов амавротической семейной идиотии (ювенильная форма), или разновидность глухонемоты; все эти заболевания чрезвычайно редки.

Что же касается общества, то можно решительно утверждать, что для общества браки между двоюродными братьями и сестрами нежелательны. Если их запретить, то число упомянутых заболеваний снизится. Однако в целом генетический эффект от запрещения подобных браков будет незначительным, и вряд ли стоит ради него жертвовать счастьем людей[4].

Рис 11. Наследование рецессивного признака.

В трех случаях браки между двоюродными братьями и сестрами привели к появлению больных детей, хотя сами родители были здоровы.

Браки между двоюродными братьями и сестрами (иначе называемые кузенными браками) — одна из форм инбридинга[5]. Наиболее интенсивная его форма — это браки между родителями и детьми или между сибсами (то есть родными братьями и сестрами). Такой инбридинг очень распространен в растениеводстве и животноводстве, но в большинстве человеческих сообществ запрещен. Правда, он был характерен для древнеегипетских фараонов, живших во втором тысячелетии до н. э., и, как утверждают, некоторые фараоны, рожденные от браков между сибсами, были чрезвычайно одаренными людьми. Возможно, это объясняется тем, что фараоны восемнадцатой династии совершенно освободились от вредных рецессивных заболеваний. И все же при «кровосмесительных» браках опасность появления дефективных детей, как правило, неизмеримо выше, чем при кузенных браках. Более того, считают (и не без оснований), что близкий инбридинг снижает рождаемость у человека.

Некоторые ограничения теории Менделя

На основании сказанного у читателя может сложиться впечатление, будто вся наследственность подчинена сравнительно простым законам Менделя. Но это далеко не так. Достаточно вспомнить примеры с гемофилией и цветослепотой, когда мы отмечали одну сравнительно небольшую модификацию менделевских законов — наследование признаков, сцепленных с полом.

Множество других случаев, к которым неприложимы законы Менделя, только подтверждают известное положение: гены действуют не обособленно друг от друга, а как части единой сложной системы. Так, например, рост и вес с их «непрерывной изменчивостью» подвержены влиянию не одного или двух генов, а очень многих. В большинстве популяций рост взрослых людей колеблется от 150 до 185 сантиметров (рис. 12). Большая часть этих отклонений отражает влияние средовых различий. Что же касается генетической детерминации роста, то число генов, ответственных за него, возможно, исчисляется сотнями, причем каждый оказывает лишь небольшое влияние. Как полагают, общее число генов в одном половинном наборе хромосом человека равно примерно 20 000[6], — не удивительно, что есть широкие возможности для самых сложных взаимодействий.

вернуться

4

Следует отметить, что данное рассуждение автора справедливо для браков между близкими родственниками в многочисленном населении, где в скрытой форме могут быть распространены многие рецессивные мутации. Иной случай представляют некоторые малые народности. В такой группе большинство возможных мутаций отсутствует и лишь немногие, по-видимому не самые вредные, могут быть распространены. Браки в такой популяции неизбежно более близкородственны, но опасность их меньше, чем в том случае, который обсуждает автор.

вернуться

5

Инбридинг — скрещивание между собой двух близкородственных организмов.

вернуться

6

Недавно высказано мнение, основанное на биохимических данных, что число генов человека в половинном (гаплоидном) наборе хромосом около 7 000 000.