Выбрать главу

Моделирование образования планет на ЭВМ

Еще французский математик Лаплас и немецкий философ Иммануил Кант предполагали, что Солнце и планеты образовались из вращающейся туманности. Сегодня подобный процесс можно попытаться смоделировать на компьютере. В дальнейшем я буду основываться на результатах расчетов, которые осуществили калифорнийский астрофизик Питер Боденгеймер и Вернер Чарнутер частью по отдельности, частью совместно в Мюнхене. Поначалу они намеревались объяснить происхождение Солнца и планет. Но дело обернулось совсем иначе.

Насколько просто моделировать на компьютере процессы, обладающие сферической симметрией, понимаешь лишь тогда, когда берешься за следующую по сложности задачу. В сферически-симметричной задаче в любой момент времени все параметры зависят только от расстояния до центра. Когда, например, в модели Ларсона вещество нагревается, то одновременно нагревается весь слой, расположенный на одном и том же расстоянии от центра, т. е. слой, лежащий на поверхности сферы определенного радиуса. Если вещество не вращается, сферическая симметрия является хорошим приближением; все частицы, участвующие в коллапсе, имеют одинаковую судьбу независимо от того, по какому направлению они движутся.

Вращение нарушает сферическую симметрию. Силы, действующие на частицы, движущиеся со стороны полюса, отличаются от сил, действующих на частицы, приходящие со стороны экватора. Сферической симметрии больше нет. Но это не значит, что задача приобретает невероятную сложность. Она сохраняет определенную степень симметрии. Например, в экваториальной плоскости частицы движутся к центру по различным направлениям, но все эти направления равнозначны. В таком случае говорят, что процесс обладает осевой (аксиальной) симметрией. Осесимметричные процессы рассчитывать на ЭВМ уже гораздо труднее, но и к ним можно найти подход. Боденгеймер и Чарнутер построили компьютерную модель коллапсирующего вращающегося облака (рис. 13.2). Вначале все идет по Ларсону: облако сжимается, и в центре образуется уплотнение. Чем сильнее сжимается облако, тем больше дает о себе знать центробежная сила: облако сплющивается. В конце концов образуется плоский диск. Теперь в коллапсе участвует лишь вещество, находящееся вблизи оси вращения, в экваториальной же плоскости газ движется к центру медленно и в какой-то момент прекращает движение. Вместо ядра, на которое со всех сторон падает вещество, мы имеем диск, на который вещество падает лишь по оси. Диск, экваториальный радиус которого в восемь раз больше его толщины, занимает огромное пространство с поперечником около 120 радиусов орбиты Плутона, самой далекой планеты Солнечной системы. Один оборот вокруг центра совершается за 300000 лет.

Рис. 13.2. Вращающееся облако межзвездного газа начинает сжиматься под действием гравитационных сил. Направление вращения показано на верхнем рисунке. Вначале газ равномерно движется по всем направлениям к центру. Затем образуется вращающийся диск (рисунок посередине), на который газ поступает из полярных областей (направление движения газа показано черными стрелками). Образуется кольцо уплотнения, которое на нижнем рисунке показано в сечении двумя кружками. На рис. 13.3 это же кольцо показано в плане. В этом процессе, рассчитанном Боденгеймером и Чарнутером в 1978 г., не образуется центральной звезды.

Это был не совсем тот результат, который хотелось бы получить. Желательно было бы прийти к объекту, в недрах которого могло возникнуть пра-Солнце. Вокруг Солнца был бы диск, из которого с течением времени могли образоваться планеты. У диска же Боденгеймера — Чарнутера в центре не было никакого солнцеподобного тела-напротив, основная плотность вещества была сосредоточена в кольце, которое охватывало центр на расстоянии 17 радиусов орбиты Плутона. Вместо центрального тела образовалось кольцо!

На рис. 13.2, в это кольцо показано в сечении, а на рис. 13.3, а-в плане.

Если разобраться, в этом результате мало удивительного. Почему вещество в этой модели не устремляется к центру, а образует кольцо? Падению вещества к центру препятствует центробежная сила. Всему виной момент импульса, которым обладает вещество. Мы уже высказали предположение, что при образовании Солнечной системы вещество и момент импульса как бы разделились, так что сегодня основная доля вещества принадлежит Солнцу, а момент импульса-планетам. В расчетах же Боденгеймера и Чарнутера каждый грамм вещества сохранял за собой тот момент импульса, которым он обладал с самого начала. Они могли повторить свои выкладки с поправкой на то, что может происходить перенос момента импульса в веществе подобно переносу тепла в каком-либо теле. Есть, правда, одна загвоздка: мы знаем несколько механизмов, с помощью которых может осуществляться перенос момента импульса от одной части газопылевого диска к другой, но не знаем, какой из них наиболее важен. Часть диска может лишиться своего момента импульса благодаря действию магнитных полей, и тогда вещество сможет образовать уплотнение в центре. Могут здесь играть роль и турбулентные движения с учетом вязкого трения.

На сегодняшний день турбулентные движения в жидкостях и газах относятся к наименее изученным физическим процессам, хотя примеры их нам хорошо известны. Струя, вытекающая под большим напором из водопроводного крана, не является однородной: внутри нее вода движется очень сложным и непредсказуемым образом. Другой пример турбулентного, нерегулярного движения жидкости — струйка лесного родника. То, что при вращении диска, из которого должна образоваться звезда, турбулентность может играть важную роль, показал еще фон Вайцзеккер в годы второй мировой войны. В конце 40-х — начале 50-х годов под его руководством в Гёттингене над этой проблемой работала группа молодых физиков. В их числе был Реймар Люст, нынешний президент Общества Макса Планка, посвятивший свою докторскую диссертацию переносу момента импульса во вращающемся газовом диске. В 1979 г. на компьютерной модели Чарнутер показал, что в диске может образоваться центральное ядро, а из него-звезда, если благодаря турбулентному движению вещества в диске происходит разделение момента импульса. К сожалению, о турбулентных движениях во вращающемся газовом диске известно так мало, что невозможно количественно оценить процессы разделения вещества и момента импульса.

На этом мы пока и остановимся. Прежде чем идти дальше, астрофизики должны выяснить механизмы переноса момента импульса в веществе. Похоже, однако, на то, что не только астрофизики не знают наверное, что им делать с моментом импульса во вращающемся газовом диске, но и сама Природа не всегда справляется с этой проблемой.

Возникновение двойной звездной системы

Кольцо, появляющееся в результате эволюции описанной выше модели, не давало покоя группе сотрудников нашего института. Что произойдет, если Природа, как Боденгеймер с Чарнутером, не будет знать, как ей разделить момент импульса, и в результате образуется подобное кольцо? Природа не дает на этот счет никаких подсказок: во Вселенной мы наблюдаем только звезды, но никогда не видим колен, вращающихся относительно нематериального центра. Что же происходит с кольцом?