Выбрать главу

Примеры для самостоятельного анализа

1. Чему равно математическое ожидание совпадения карт по масти и по старшинству при одновременном перелистывании двух колод (две дамы пик, два туза треф и т. д.)?

2. Чему равно математическое ожидание совпадения карт по мастям при перелистывании двух колод по 32 карты в каждой?

Ответы: 1 (1), 2 (8).

Естественно, определение оптимальной тактики, обеспечивающей максимальный выигрыш при длительной игре в преферанс, базируется на более сложных соотношениях. Эту задачу можно разделить на два этапа. Сначала нужно определить вероятность повторения расклада как случайного события, а затем оценить различные возможные решения и оптимизировать математическое ожидание выигрыша. Большинство практических задач расчёта вероятностей определённого расклада, нужного прикупа и т. д. можно свести к следующей общей схеме.[104]

В генеральной совокупности, состоящей из n карт, имеются n1 красных и n-n1 чёрных карт. Из этой совокупности берётся выборка в r карт (без учёта порядка карт в выборке). Нужно найти вероятность qk того, что такая выборка содержит ровно k красных карт (k≤n1;k≤r). Таким образом, выборка должна содержать k красных и r-k чёрных карт. Красные карты (их всего n1) могут быть выбраны  различными способами, чёрные карты —  способами.

Здесь — так называемые биномиальные коэффициенты:[105] , где  — число возможных перестановок из а элементов.

Отметим, что  — выборка, содержащая все а красных карт, может быть создана единственным способом.

Любой способ выбора k красных карт может комбинироваться с любым способом выбора r-k чёрных карт. Вероятность qk, что такая выборка содержит ровно k красных карт, определяется следующей зависимостью: . (1)

Если выборка должна содержать только красные карты (r=k), то зависимость (1) упрощается: . (2)

Определённая таким образом система вероятностей qk называется гипергеометрическим распределением и кажется достаточно сложной. Однако приведённые ниже примеры покажут, что расчёты вероятностей реальных раскладов достаточно просты, а их результаты обычно могут быть сведены в таблицы.

Например, вы купили прикуп, сделали снос, на руках шесть старших карт в пике и AKQx в трефе (трефа не сносилась). Какова вероятность того, что у одного из партнёров на руках четвёртый валет треф?

n1=k=4; n=20; r=10

. (3)

Таким образом, четвёртая трефа встретится в 87 случаях из 1000 (вероятность расклада удваивается, поскольку вам всё равно, у кого из партнёров будет четвёртый валет треф).

Или, например, вы хотите объявить мизер. Для того чтобы он был чистым, нужно купить в прикупе одну из семи заказных карт. Какова вероятность, что вы купите нужную карту и сыграете «чистый» мизер?

. (4)

Второй член в (4) определяет вероятность покупки двух из семи заданных карт.

Система вероятностей qk легко обобщается на случай, когда исходная совокупность из n карт содержит более двух классов элементов.

Вероятность того, что выборка объёма r содержит k1 элементов первого класса, k2 элементов второго класса и r-k1-k2 элементов третьего класса, определяется аналогично (1):

. (5)

где n1 и n2 — количество элементов первого и второго класса в генеральной совокупности; n-n1-n2 — число элементов третьего класса. Элементами класса могут быть карты какой-то масти, определённый набор карт и так далее.

Точно так же можно определять вероятности для выборки, содержащей четыре класса элементов. Рассмотрим пример, в котором элементами каждого класса являются карты одной из четырёх мастей.

У вас на руках AKxx, Axx, Axx, а в сносе две фоски четвёртой масти. Первая масть — козырная. Какова вероятность того, что вы проиграете контракт на шесть взяток, если партнёры вистуют в светлую?

вернуться

104

Феллер В. Введение в теорию вероятностей и её приложения. В 2 т. М., 1967. Т. 1. С. 497. В оригинале: William Feller. An Introduction to Probability Theory and Its Applications. 2-nd edition. V. 1. N.Y., 1957.

вернуться

105

Их часто называют числом сочетаний из a по b и обозначают .