Выбрать главу

AO : OM = √3 : 1, а BOON = 1 : (√3 − 1).

Найдите углы треугольника.

1.10. Внутри угла а взята точка M. Ее проекции P и на стороны угла удалены от вершины O угла на расстояния OPp и OQ = q. Найдите расстояния MP и MQ от точки M до сторон угла.

1.11. В остроугольном треугольнике две высоты равны 3 и 2√2 см, а их точка пересечения делит третью высоту в отношении 5 : 1, считая от вершины треугольника. Найдите площадь треугольника.

1.12. В треугольнике ABC разность углов B и C равна π/2. Определите угол C, если известно, что сумма сторон b и c равна k, а высота, опущенная из вершины A, равна h.

1.13. В треугольнике ABC имеется точка O, такая, что углы ABO, ВСО и CAO равны α. Выразите ctg α через площадь треугольника и его стороны.

1.14. В треугольнике ABC дана разность φ углов A и В (φ = A − В > 0). Известно, что высота, опущенная из С на AB, равна BC − AC. Найдите углы треугольника.

1.15. Даны длины высот AA1 = ha и ВВ1 = hb треугольника ABC и длина CDl биссектрисы угла С. Найдите угол С.

1.16. В треугольник с основанием а и противоположным углом α вписана окружность Через центр этой окружности и концы основания треугольника проведена вторая окружность Найдите ее радиус.

1.17. Докажите, что если длины сторон треугольника образуют арифметическую прогрессию, то центр окружности, вписанной в этот треугольник, и точка пересечения его медиан лежат на прямой, параллельной средней по длине стороне треугольника.

1.18. В треугольнике ABC радиус вписанной окружности равен r, сторона BC больше r в k раз, а высота, опущенная на эту сторону, больше r в 4 раза. Найдите полупериметр p, tg A/2 и стороны b и c.

1.19. Углы С, A, В треугольника ABC образуют геометрическую прогрессию со знаменателем 2. Пусть O — центр окружности, вписанной в треугольник ABC, K — центр вневписанной окружности, касающейся стороны AC, L — центр вневписанной окружности, касающейся стороны BC. Докажите, что треугольники ABC и OKL подобны.

1.20. В треугольнике ABC углы A, В и С образуют геометрическую прогрессию со знаменателем 2. Докажите, что

1.21. Докажите, что если P, Q, R — соответственно точки пересечения каждой из сторон BC, CA, AB (или их продолжений) треугольника ABC с некоторой прямой, то

(теорема Менелая).

1.22. Точка D находится на стороне BC треугольника ABC. Докажите, что

AB² · DC + AC² · BD − AD² · BC = BC · DC · BD

(теорема Стюарта).

1.23. На сторонах треугольника ABC взяты точки P, Q и R так, что три прямые AP, BQ и CR пересекаются в одной точке. Докажите, что

(теорема Чевы).

1.24. Через произвольную точку O, взятую внутри треугольника ABC, проведены прямые DE, FK, MN, параллельные соответственно AB, AC, BC, причем F и M лежат на AB, E и K — на BC, N и D — на AC. Докажите, что

1.25. Через центр O правильного треугольника ABC проведена произвольная прямая. Докажите, что сумма квадратов расстояний от вершин треугольника до этой прямой не зависит от выбора прямой.

1.26. Вокруг треугольника ABC, в котором а = 2, b = 3 и угол C = 60°, описана окружность. Определите радиусы окружностей, проходящих через две вершины треугольника и центр описанной окружности.