Выбрать главу

Это очень точное значение, но его одного явно недостаточно для решения задачи.

Возможно, самая известная история, связанная с квадратурой круга, произошла со знаменитым философом и главой школы эмпиризма Томасом Гоббсом (1588–1679) и со знаменитым английским математиком Джоном Валлисом (1616–1703). Гоббс, вне сомнения, очень умный человек, но не получивший математическое образование, в 1655 году в труде «О теле» заявил, что решил задачу о квадратуре круга наряду с другими задачами, в частности о выпрямлении различных кривых. Понятно, что он ошибался, и Валлис в кратком труде Elenchus geometriae hobbianae описал различные ошибки и в язвительном тоне, но правдиво, отозвался о геометрических способностях Гоббса. Следует заметить, что Валлис исповедовал пресвитерианское учение, что было еще более ненавистно Гоббсу, который был противником всякой религии. Математическая подготовка Гоббса была недостаточной, ведь он познакомился с учением Евклида лишь в 40 лет, но, в конце концов, другие философы были столь же посредственными математиками, и в этом не было ничего особенного. Упомянем лишь один пример: уже в XIX веке Маркс утверждал, что диалектический материализм выводится логическими рассуждениями из уравнения второй степени. Гоббсу повредило то, что он не хотел признать своих ошибок, перевел спор на личности и возвращался к дискуссии снова и снова. В частности, его перу принадлежит книга «Замечания об абсурдной геометрии, деревенском языке, церковной политике в Шотландии и невежестве Джона Валлиса». Спор изобиловал придирками, к сожалению небеспочвенными. Так, Валлис обвинил Гоббса в плагиате работ его современников: «…Если в его изложении попадется нечто правдивое, то оно принадлежит не ему, а взято у кого-либо еще».

Томас Гоббс (слева) и Джон Валлис вели длинный спор, в котором оскорбления и клевета были в порядке вещей. Причиной ссоры была задача о квадратуре круга.

ДЖОН ВАЛЛИС (1616–1703)

Знаменитый знак бесконечности  был введен именно этим блестящим английским математиком. Будучи членом Лондонского королевского общества, Валлис занимался расшифровкой сообщений и в первую очередь модной темой той эпохи — вычислением бесконечно малых, в которое он внес новые интересные концепции. Наиболее примечательное его творение принадлежит к теории рядов. Это красивая и полезная формула:

Валлис великолепно производил вычисления в уме. Возможно, причиной этому было то, что он страдал от бессонницы. Также он занимался грамматикой и, что еще более незаурядно, вложил немало сил в обучение глухонемых.

* * *

Бельгийскому иезуиту Грегуару де Сен-Венсану (1584–1667) мы обязаны, помимо прочего, созданием полярных координат, открытием новой системы, близкой к понятию интеграла, и точным расчетом площади под гиперболой. Он также утверждал, что решил задачу о квадратуре круга. Его современники восприняли это с изрядным скептицизмом, и в конце концов Гюйгенс нашел неизбежную ошибку в его рассуждениях. Он упомянут в этой книге за выдающиеся труды и в связи с тем, что ему принадлежит множество корректных и интересных математических доказательств.

Классический пример квадратуры круга представил производитель мыла Якоб Марцелис (1636 — ок. 1714), который утверждал, что

Огастес де Морган в своем сборнике математических ужасов A budget of paradoxes («Запас парадоксов») не слишком благосклонно заметил: «Как и следовало ожидать, в мыловарении он добился больших успехов, чем в вычислении знаков π».

Со временем нелепостей становилось все больше: в 1728 году некий Малтулон заявил, что разгадал тайну вечного движения и квадратуры круга одновременно. Кроме этого, он предложил вознаграждение тому, кто смог бы опровергнуть хотя бы один шаг доказательства, что свидетельствовало о недюжинной уверенности в себе. Итог оказался предсказуем: было показано, что его доказательство ошибочно, и Малтулону не оставалось другого выбора, кроме как выплатить обещанное. Неудивительно, что в 1753 году Французская академия наук постановила не рассматривать присылаемые решения задачи о квадратуре круга. Возможно, академиков испугало все большее число присылаемых решений и связанные с этим неизбежные издержки. Быть может, они решили таким способом избавиться от определенных личностей, подобных некоему Восенвиллю, который потребовал от Академии премию, полагавшуюся первому, кто решит эту задачу.