Выбрать главу

СРИНИВАСА РАМАНУДЖАН (1887–1920)

Этот индийский математик — один из удивительнейших талантов, известных человечеству. Он был родом из очень бедной семьи. После прочтения краткого конспекта лекций по математике, где не приводились доказательства, юноша почувствовал тягу к знаниям. Он написал нескольким известным европейским математикам и отправил им результаты своего труда (120 теорем), но получил единственный ответ — от англичанина Готфрида Харолда Харди (1877–1947). Харди вместе со своим другом Джоном Литлвудом (1885–1977) за одну ночь прочитал присланную ему рукопись и не поверил своим глазам. Как объяснял сам Харди, формулы Рамануджана «должны быть истинными, поскольку если бы они не были истинными, то ни у кого не хватило бы воображения, чтобы изобрести их». Некоторые из них были похожи на те, что получили Харди и Литлвуд, прочие были в равной степени странны и оригинальны. Позднее, сначала за счет самого Харди, а затем за счет Кембриджского университета Рамануджан переехал в Великобританию, где и работал до самой смерти, наступившей в раннем возрасте от туберкулеза. Ввиду оригинальности его работ его вклад в математику беспорядочен и слабо поддается оценке, поскольку Рамануджан часто не приводил подробный вывод своих формул.

Он был очень религиозным человеком и вегетарианцем. Его в точности описывает наиболее известный анекдот о нем. Как-то Рамануджан попал в больницу и Харди отправился навестить его. Харди заметил, что приехал в такси с номером 1729. Он назвал это число скучным и непримечательным. «Вовсе нет, — последовал ответ. — Это наименьшее натуральное число, представимое в виде суммы кубов двумя различными способами!». Действительно, 1729 = 93 + 103 = 13 + 123, и 1729 является наименьшим возможным числом, которое обладает подобным свойством. Этот случай не был бы чем-то из ряда вон выходящим, если бы Харди не потребовалось несколько недель на доказательство этого утверждения. На тщательное же изучение этой темы у него ушло почти 35 лет. Сегодня математики продолжают изучать подобные числа, так называемые номера такси.

* * *

Вычисление первых 2037 знаков π на компьютере ENIAC заняло 70 часов. В таблице ниже указано рассчитанное количество знаков π и год, чтобы дать представление о том, какие изменения вызвало появление компьютеров:

1947 Д. Фергюсон и Джон Ренч с использованием механического калькулятора ∙ 808

1949 Джон Ренч-младший и Леви Смит с помощью ENIAC ∙ 2037

1958Франсуа Женюи ∙ 10 000

1961Дэниел Шенке и Джон Ренч ∙ 100 265

1973 Жан Гийу и Мартин Буйе ∙ 1001 250

1983 Ясумаса Канада и Ясунори Уширо ∙ 10 013 395

1987Ясумаса Канада, Йошияки Тамура и Йошинобу Кубо ∙ 134 214 700

1989 Григорий и Давид Чудновские ∙ 1011196 691

2002 Ясумаса Канада с группой из девяти специалистов ∙ 1241100 000 000

2009ДайсукеТакахаши и группа программистов ∙ 2576 980 370 000

2011Сигеру Хондо ∙ 10 000 000 000 050

В 1973 году старинная формула Эйлера вкупе с формулой Мэчина позволила Гийу и Буйе вычислить миллион знаков π:

Любопытно, что для вычисления второго слагаемого достаточно вычислить первое и перенести запятую на несколько позиций. Вне зависимости от их абсолютной величины два первых слагаемых будут отличаться только количеством нулей.

В 1976 году Юджин Саламин и Ричард Брент предложили алгоритм, основанный на давней гипотезе Гаусса и Лежандра о последовательном вычислении средних арифметических и средних геометрических. Суть алгоритма непросто описать вкратце. Алгебраический алгоритм — это метод расчета некой величины, в данном случае Я. Саламин и Брент использовали следующие исходные равенства:

a0 = 1; b0 = 1/√2; t0 = 1/4; p0 = 1,

затем рекуррентным способом вычислили

an+1 = (an + bn)/2;

bn+1 = √(anbn);

tn+1 = tnpn(an - an + 1)2;