Если сложить первые 20 цифр π, получим 100. Если сложить первые 144 цифры, получим апокалиптическое число зверя 666 из «Откровения Иоанна Богослова». Но мы не вправе считать подобные совпадения проявлением чего-то высшего, поскольку они зависят от выбранной системы счисления, которая целиком и полностью придумана человеком.
Так, Дэвид Чамперноун (1912–2000) придумал нормальное число по основанию 10. Он обнаружил это число в 21 год, еще не закончив обучение. Это пример трансцендентного числа, которое одновременно является нормальным и универсальным. Оно определяется очень просто: достаточно записать по порядку все натуральные числа:
С10 = 0,123456789101112131415161π81920212223…
Нет никаких сомнений, что это число является универсальным, так как в десятичной записи числа Чамперноуна встречается любая последовательность из N цифр. Оно обозначается С10, где 10 означает десятичную систему счисления. Кроме этого, существует бесконечное множество вариантов С10, обладающих теми же свойствами.
Оставим дальнейшее рассмотрение этого вопроса читателю в качестве упражнения. Следует добавить, что так называемое число Коупленда — Эрдёша, формируемое аналогичным способом, но только из простых чисел, также является нормальным (по основанию 10):
0,235711131719232931…
С определенной точки зрения особенность числа π, о которой пишет Саган, не является чем-то уникальным. Числа, содержащие в себе круг, образованный нулями и единицами, встречаются не так уж редко. Фактически существует бесконечное множество таких чисел, но они не связывают между собой длину и диаметр окружности.
Является ли π универсальным числом? Неизвестно. Известно лишь, что все универсальные числа являются нормальными, но это нисколько не помогает найти ответ на этот вопрос.
Чешский математик и логик Курт Гёдель (1906–1978) доказал утверждение, которое смущает умы и ставит пределы человеческому знанию. Представим логическую систему с теоремами и аксиомами, которая также описывает элементарные арифметические операции. Например, это может быть обычная математика. Можно ли представить, что она содержит противоречие? «Что за ерунда!» — скажет большинство. Возможно ли, что она является неполной? Может ли она содержать формулы, которые нельзя ни доказать, ни опровергнуть методами этой логической системы? Большинство также скажет, что это невозможно. Как может быть неполной область знаний, содержащая правила элементарной арифметики? Любая теорема верна либо неверна. Возможно, чтобы окончательно узнать это для некоторых теорем, потребуется много времени, но однажды они будут доказаны либо опровергнуты. Наглядный пример этому — теорема Ферма: прошло несколько веков, прежде чем было получено ее доказательство.
Гёдель доказал, что любая формальная система является неполной или противоречивой и не может являться полной и непротиворечивой одновременно. Если она является полной и любое утверждение в ней можно доказать или опровергнуть, то какое-то из ее положений противоречиво. Если же система не содержит противоречий, то, по Гёделю, она является неполной. Всегда будет существовать утверждение, которое нельзя будет доказать или опровергнуть.
КОНТИНУУМ-ГИПОТЕЗА
Георг Кантор провел большую часть жизни в попытках доказать гипотезу, которую можно сформулировать так: пусть А — счетное множество, кардинальное число которого равно Х0. Определим как кардинальное число Ф(А), где Ф(А) является множеством подмножеств А:
|Ф(А)| = Х1
Обозначим количество вещественных чисел, или кардинальное число множества вещественных чисел, за с и назовем его континуумом. Кантор пришел к следующему неравенству:
Х0 < c < Х1.
Он был точно уверен, что между Х0 и Х1 не может находиться никакого кардинального числа, так как с = Х1. Это так называемая континуум-гипотеза.
В 1963 году американский математик Пол Коэн (1934–2007) доказал, что эта гипотеза является недоказуемой, поэтому ее можно считать истинной или ложной. При этом в общей математике ничего не изменится.
* * *
Гёдель поставил нас в очень интересное положение. Бертран Рассел в шутку говорил, что чистая математика — это такой предмет, где мы не знаем, о чем мы говорим, и не знаем, истинно ли то, что мы говорим. Рёдель окончательно испортил дело. Мы также не знаем, сможем ли мы когда-либо что-либо доказать. Теорема Гёделя не выдумка, так как уже найдены некоторые недоказуемые утверждения, среди которых — континуум-гипотеза.