К промежуточной камере пристыковывают грузовые и пилотируемые транспортные корабли. Эта камера используется в качестве буферного объема между рабочим отсеком станции и транспортными кораблями. Она же применяется для частичного размещения доставляемых грузов. Через переходный отсек и промежуточную камеру после пристыковки кораблей прокладываются воздуховоды из станции в корабли для вентиляции обитаемых отсеков кораблей.
Конструкция корпуса должна обеспечивать надежную защиту от воздействия внешнего вакуума, предохранять экипаж и приборы от воздействия микрометеоров, на его внешних поверхностях допускать размещение тех приборов и агрегатов, которым полагается «смотреть» во внешнее пространство: чувствительные элементы системы ориентации, солнечные батареи, оптические приборы, научная аппаратура (та часть, которая не может «работать» через иллюминаторы), антенны, радиаторы и т. п.
Идеальным для решения задачи герметизации космического аппарата было бы создание цельносварной конструкции его корпуса, однако это практически невозможно. Есть целый ряд факторов, мешающих такому решению. В частности, пока не удается надежно сварить стекло и металл без нарушений в оптических характеристиках стекла. Из технологических же соображений нежелательно сваривать корпуса рабочего и переходного отсеков, рабочего отсека и отсека научной аппаратуры; сквозь гермоконтур отсеков наружу должны выходить тысячи электрических проводов, большое количество гидромагистралей. Наконец, требуется периодически соединять внутренний объем с внешним пространством (например, для выбрасывания отходов).
Поэтому в конструкцию корпуса станции приходится вводить сотни разборных герметичных соединений, уплотняемых, как правило, с помощью резиновых прокладок. Подбор материалов и конструкций этих уплотнений должен производиться с учетом температурных условий мест уплотнения, подвижности соединения, требуемого ресурса по открытию-закрытию, воздействия внешнего жесткого (главным образом ультрафиолетового) излучения (если это уплотнение находится непосредственно на внешней поверхности) и т. д.
В последние годы, когда продолжительность пилотируемых полетов сильно увеличилась, обострился вопрос защиты от микрометеоров. Во времена полетов космических кораблей «Восток», «Восход» и в первые годы полетов кораблей «Союз» этой проблемы практически не было. На базе теоретических и экспериментальных исследований было установлено, что вероятность пробоя герметизирующей стенки корабля микрометеором очень мала и составляет сотые и даже тысячные доли процента при продолжительности полета космонавтов несколько суток (с учетом размера космического корабля). Эти результаты расчета вероятностей основаны на различных моделях микрометеорного облака в окрестностях орбиты Земли и на данных о взаимодействии метеоров с материалом стенки корабля.
В настоящее время продолжительность космических полетов исчисляется месяцами для космических кораблей и годами для орбитальных станций. При этом вероятность пробоя однооболочечной конструкции космического аппарата микрометеорами становится уже достаточно большой, и ее необходимо учитывать при проектировании. В современных станциях просто нельзя использовать однооболочечную конструкцию для корпуса герметичных отсеков.
Обычно в конструкции корпуса рабочего отсека, помимо герметизирующей оболочки, применяются еще и экраны, устанавливаемые на определенном расстоянии от самой оболочки. Суть данного метода защиты от микрометеорной опасности заключается в следующем. При столкновении с экраном микрометеор взрывается (поскольку скорость движения частицы относительно станции составляет 10―30 км/с!), и остатки его и разрушенного материала экрана, быстро расширяясь (в виде струи), теряют энергию, которая позволила бы частице проникнуть в герметичный объем.
Часть корпуса рабочего отсека «Салюта-6» закрыта радиатором системы терморегулирования станции, который в этом месте играет роль и противометеоритного экрана. Остальная же часть корпуса рабочего отсека, корпуса переходного отсека и промежуточной камеры защищена либо специальными противометеорными экранами-кожухами, либо другими элементами конструкции (панелями агрегатов системы терморегулирования, оболочкой агрегатного отсека и т. п.).
Для борьбы с влиянием невесомости используются тренажеры, предназначенные для обеспечения заметной дополнительной нагрузки на сердце и основные группы мышц во время выполнения физических упражнений. К этим средствам относятся велоэргометр, бегущая дорожка, пневмовакуумный костюм.