Выбрать главу

Безусловно, эта история выдумана с начала до конца, и, конечно, это очередная реконструкция, но обратите внимание на ее достоинства. Я не ссылался на возможности современной математики и все, что предположил, можно документально подтвердить и обосновать. Все перечисленные мной задачи действительно решались на определенном этапе развития вавилонской математики, решались тысячами, тиражировались тысячами тысяч в школах писцов, причем в самых разнообразных последовательностях и сочетаниях. Среди таких последовательно решенных (как правило, в учебных целях) задач при огромном потоке решений вполне могли встречаться и такие подборки задач, которые обеспечивали построение решений новых задач. Чертежи с числами и алгоритмы решения учебных задач (случайно, а в дальнейшем специально подобранные) облегчали отождествление уже решенных задач с условиями новых. В работе (61) я показал, что подобным же способом были построены таблицы пифагорейских троек (чисел 3, 4, 5; 5, 12, 13; 8, 15, 17 и т. д., для которых была справедлива теорема Пифагора) и решен ряд других задач.

Предложенная реконструкция заставляет пересмотреть многие представления о характере шумеро-вавилонской математики. Во-первых, получается, что вавилонские математики пользовались вполне естественным (если иметь в виду уровень развития их практики) языком, который образовывали простейшие алгоритмы вычисления полей и поясняющие их чертежи с числами. Во-вторых, никаких уравнений они не знали и тем более не знали способов их преобразования. В-третьих, создавая решения задач, вавилонские математики не проводили логических умозаключений; все, что от них требовалось в плане мышления, – сравнить между собой условие новой задачи с решениями специально или случайно подобранных задач. Конечно, это сравнение не было простым, оно включало в себя, с одной стороны, сравнение чертежей полей, с другой – сравнение чисел, фиксирующих размеры полей или их элементов. Кроме того, необходимо было путем вычислений связывать те или иные элементы полей или величины их площадей (например, деля одну величину на другую, выяснять, что одно поле в два раза больше другого). Однако все эти мыслительные действия ничего общего не имеют как с геометрическими или алгебраическими преобразованиями уравнений, так и с логическими умозаключениями.

В данном параграфе фигурирует выражение «семиотическое производство». Что здесь имеется в виду? В своих работах я обращал внимание на то, что атрибутивные и эмпирические знания, получавшиеся в древнем семиотическом производстве, фиксирующие характеристики определенных объектов (полей, хозяйственных сооружений, траекторий движения звезд и планет по небу и т. п.), а также связи между ними, заданные операциями со знаками (числами или величинами), проверялись на соответствие действительности только на основе практики, носившей сугубо хозяйственный или сакральный характер. Другими словами, закреплялись только те знаки и знания, которые отвечали хозяйственной или сакральной практике, обеспечивая решение возникавших в ней задач (например, позволяя подсчитывать и суммировать большие совокупности, восстанавливать поля той же площади, определять время появления первых звезд, планет и затмений; к небесным явлениям, т. е. богам, как правило, приурочивались хозяйственные работы, вообще встречи с богами для совместной деятельности). Другой важной особенностью является безличный и сакральный характер знаний: они понимались как мудрость, считались принадлежащими богам, которые лишь поделились с жрецами этими знаниями.

Добавление. И все-таки, как я показываю, связи между вавилонской математикой и геометрией (алгеброй), безусловно, существуют. Дело в том, что греческая геометрия и элементы диофантовой алгебры возникли не на пустом месте, а в ходе реконструкции греческими математиками вавилонских (и возможно, древнеегипетских) задач и способов их решения. Да, именно реконструкция решений вавилонских задач – один из путей, ведущих к построению как геометрии, так и алгебры.