Хорошо растворяет органические вещества также аммиак, который и по другим свойствам приближается к воде. По составу органические соединения, растворимые в аммиаке, отличаются от привычных нам «водноуглеродных». Чтобы установить соответствие между ними, надо заменить в обычных органических соединениях кислород на аминовую группу NН, а гидроксильную группу ОН заменить на амин NН2 . Так, этиловому спирту С2Н5ОН будет соответствовать соединение С2Н5NН2 . Таким способом можно построить аналоги обычных аминокислот и аналоги состоящих из них белковых соединений. Так же могут быть построены аналоги ДНК и РНК с их кодом наследственности. Если такие аммиачные организмы существуют, то процессы метаболизма в них отличаются от метаболизма земной жизни. Земные организмы пьют воду и дышат кислородом, а «аммиачные» организмы пьют аммиак и дышат азотом. При нормальном давлении аммиак сохраняется в жидком состоянии в интервале температур от —70 °С до —33 °С. Следовательно, аммиачная жизнь может существовать только при очень низкой температуре. В Солнечной системе подобные условия могут иметь место в атмосферах планет-гигантов, где имеется и достаточное количество аммиака. В настоящее время нет никаких данных о существовании аммиачной жизни, но принципиально такая возможность существует.
Кроме аммиака и воды в качестве возможных растворителей рассматривались метиловый спирт, фтористоводородная кислота (НF) и цианистый водород. Считается, что использование их в качестве растворителя маловероятно, но полностью исключить такую возможность мы не можем. Отметим, что метиловый спирт сохраняется в жидкой фазе при весьма широком диапазоне температур — от —94 °С до + 65 °С, что соответственно расширяет возможности «метилово-углеродной» жизни.
До сих пор речь шла о различных формах углеродной жизни. Но нельзя ли еще больше расширить ее возможности (и диапазон условий существования) за счет перехода к неуглеродным формам? Конечно, использование углерода в качестве основного элемента жизненно важных молекул является не случайным. Выше мы уже говорили о тех свойствах углерода, которые используются при построении биохимических соединений. Благодаря своим химическим свойствам (наличию сильных ковалентных связей) углерод способен образовывать длинные молекулярные цепи, создавая практически неисчислимое множество сложных и вместе с тем стабильных молекул. Более того, поскольку ковалентные связи имеют пространственную ориентацию, углеродные цепи формируются в гигантские трехмерные структуры, которые характерны для активной фазы жизненно важных молекул. Атомы углерода образуют «несущий каркас» (скелет) этих пространственных конструкций. Существуют ли другие элементы с подобными свойствами?
Ближайшим к углероду четырехвалентным элементом является кремний. В периодической системе элементов Менделеева он расположен в одной группе с углеродом, непосредственно под ним. Обилие кремния во Вселенной меньше, чем углерода, но все же он достаточно распространенный элемент; на Земле, например, его много больше, чем углерода. Можно ли на основе кремния построить длинные молекулярные цепи? Связь между атомами кремния приблизительно вдвое слабее, чем между атомами углерода. Но главное не в этом; главное в том, что связь кремний-кремний много слабее связи кремний-кислород и кремний-водород. Поэтому длинные цепочки, основанные на структуре —Si—Si—Si—Si—, создать сложно. Но эта трудность не является непреодолимой. Оказалось, что можно создать кремниевые полимеры на основе кремний-кислородных связей, т. е. на основе цепочки: —Si—O—Si—O—, где атомы кремния чередуются с атомами кислорода. Такие полимеры (силоксаны) стабильны и могли бы послужить основой «кремний-органической» жизни.
В условиях относительно низких температур, которые господствуют на поверхностях планет, кремний-органическая жизни не может возникнуть. Этому препятствует чрезвычайно сильное сродство кремния к кислороду. При температуре меньше 1000 К даже в очень богатой водородом восстановительной атмосфере кремний вместо того, чтобы соединиться с водородом и образовать силан SiH4 (аналогичный метану в химии углеродных соединений), соединяется с кислородом, присутствующим пусть в самом ничтожном количестве, и образует двуокись кремния SiO2 . Однако при высокой температуре, больше 1 000 К, простейшие кремний-органические соединения, такие как силан, все же образуются. Наряду с другими кремний-водородными соединениями они могут стать исходным материалом для образования более сложных кремний-органических молекул. Следовательно, жизнь на основе кремния может возникнуть только в условиях высоких температур, которые имеют место в атмосферах звезд или в недрах планет. В связи с этим невольно возникает вопрос: может быть, не так уж не правы были те ученые, которые допускали возможность существования жизни на Солнце? Конечно, с нашей обычной точки зрения, это совершенно экзотические формы жизни.