Впрочем, не будем преувеличивать степень «антропоморфизма», с которым мы сталкиваемся при использовании формулы Дрейка. В отличие от некоторых более поздних «усовершенствований», где с излишней детализацией выписываются многочисленные сомножители, учитывающие факторы, оказавшие влияние на происхождение жизни на Земле и ход ее эволюции, увенчавшейся появлением современного технологического общества, — в формуле Дрейка учитываются только самые важные факторы: происхождение жизни, не обязательно полностью похожей на нашу; происхождение разума, не обязательно точно такого, как наш; происхождение технологии, не обязательно повторяющей наш путь. Вместе с гем эта формула позволяет очертить область необходимых исследований: первые два сомножителя (R∗ и fp) относятся к компетенции астрономии, третий пe — к компетенции астрономии и биологии; РL — это область предбиологической химии; Рi , — область эволюционной биологии; Рс и L относятся к компетенции социальных наук. Одним словом, несмотря на неизбежно присущую ей ограниченность, формула Дрейка представляет собой удобный и полезный для анализа инструмент.
4.3.2. Оценка факторов, входящих в формулу Дрейка.
Из всех факторов, входящих в формулу Дрейка, на основе современных данных, можно, более или менее точно, оценить только астрономические величины: N∗ , Т и R∗. С точностью до коэффициента 2 они равны:
N∗ = 2 • 1011 звезд, Т = 1010 лет, R∗ = 20 зв./год. (4.7)
Оценка остальных факторов менее определенная.
Фактор fp , по-видимому, близок к единице. Это следует из современных представлений о формировании планетных систем в едином процессе со звездообразованием. В п. 2.1.3 мы отмечали, что у звезд спектральных классов более поздних, чем F5, на определенном этапе эволюции формируется протопланетный диск, которому передастся основная доля вращательного момента протозвезды. Из этих представлений, подтверждаемых наблюдаемым распределением скоростей вращения звезд различных спектральных классов, следует, что все звезды спектральных классов от F5 до М имеют планетные системы. Атак как эти звезды составляют подавляющее большинство (более 99 %) всех звезд Галактики, то можно положить fp ≈ 1.
Дополнительным аргументом в пользу такой оценки является широкая распространенность двойных и кратных систем среди звезд. В п. 2.1.2 мы видели, что от 50 до 70 % звезд представляют собой системы той или иной степени кратности. А по некоторым данным, с учетом звезд малой массы, доля кратных систем может возрасти до 90 %. Среди компонентов этих систем встречаются и массивные горячие гиганты, и обычные звезды, и белые карлики, и нейтронные звезды, и «черные дыры». Встречаются среди них и темные спутники, представляющие собой промежуточные тела между планетами и звездами. Но коль скоро это так, то естественно допустить, что существуют и такие системы, в которых меньшие компоненты уже настолько малы, что достигают планетных размеров. В этом смысле одиночные звезды с планетными системами можно рассматривать как предельный случай кратных систем с очень малыми массами компонент. С другой стороны, как мы видели, и в самих кратных системах могут существовать планеты, обращающиеся сразу вокруг обеих звезд, в случае тесных пар, или вокруг каждого из компонент кратной системы, в случае достаточно широких систем. Наконец, наличие богатых семейств спутников у больших планет нашей Солнечной системы тоже говорит о том, что процессы фрагментации при образовании небесных тел, по-видимому, достаточно типичны и должны приводить к образованию планетных систем у звезд.
Но все это качественные соображения. В последние годы они получили наблюдательное подтверждение, когда с помощью инфракрасных наблюдений (главным образом, на спутнике «ИРАС») вокруг многих звезд были обнаружены пылевые оболочки, часть из которых представляют собой формирующиеся протопланетные диски.