Выбрать главу

Но здесь может возникнуть другой вопрос — а зачем это нужно? Разве мы не удовлетворены традиционными методами получения научной информации с помощью научных теорий, которые лежат в основе применяемой нами технологии? Дело в том, что наука не всегда может дать точное решение. Классический пример — задача n-тел в небесной механике. Как известно, существует точное решение задачи только для двух тяготеющих тел. Поэтому когда небесные механики вычисляют орбиту какой-нибудь планеты, они сначала предполагают, что, кроме этой планеты и Солнца, во Вселенной нет больше никаких тяготеющих тел (т. е. пренебрегают притяжением других тел), и в этом предположении вычисляют орбиту планеты. А затем вносят в результаты расчета поправки, обусловленные гравитационным возмущением других планет. Полученное решение будет приближенным, но если оно удовлетворяет практическим потребностям, его можно принять в качестве окончательного. Так обычно и поступают. Но должно же существовать точное решение! Более того, оно не только существует, но Природа знает это решение! Ведь, если мы поместим в некоторую область пространства n тяготеющих тел, зададим им определенные начальные скорости, то Природа быстро распорядится и распределит все n-тел по их траекториям. Вот бы нам научиться поступать так же!

Как решить эту задачу? А как решает свои задачи Природа? Лем обращает внимание на развитие зародыша. Это настоящая «химическая симфония», — говорит он. В результате разыгрывания этой симфонии из одного организма возникает другой организм. Так вот, информация должна возникать из информации, как организм из организма. Развитием зародыша управляет информация, содержащаяся в молекулах ДНК. Значит, если мы хотим вырастить информацию, мы должны создать «информационные молекулы», аналогичные молекулам ДНК. Попадая в соответствующую среду, информационные молекулы будут строить «организмы» в соответствии с заложенным в них алгоритмом. «Производственный рецепт» должен содержать определенные постулаты, лежащие в основании теории, и правила преобразования, правила вывода следствий из этих постулатов. Таким образом, на «информационной ферме» будут выращиваться «теоретические организмы», представляющие собой конструкции из «материализованных» мыслеобразов.

Развивая эту идею, Лем указывает на то, что Конструктор может создать вид «эволюционирующих конечных автоматов». Всякий конечный автомат реализует определенный алгоритм. Если мы говорим об эволюционирующем конечном автомате, значит, он должен реализовывать изменяющийся алгоритм. Такое изменение может происходить под воздействием «окружающей среды» на основе того же механизма, как и в биоэволюции: «мутации» плюс «естественный отбор». То есть можно вводить определенные (или случайные) изменения в алгоритм, в результате которых будет генерироваться новая теория, которой предстоит пройти проверку практикой; теории, не прошедшие проверку, — отбраковываются. Ведь подобным же образом поступает и биоэволюция, она проверяет эволюционное решение на практике в процессе естественного отбора. Применительно к выращиванию информации, таким способом можно получить непрерывно эволюционирующую теорию (например, теоретическую физику).

Итак, на «информационной ферме» Лема непрерывно генерируются теории. Определенные устройства собирают факты, обобщают их, проверяют справедливость обобщений на новом фактическом материале, и этот «конечный продукт» уже после «техконтроля» выходит к потребителю. В грядущем, говорит Лем, ученые будут получать уже только теоретический экстракт и будут строить теории не из фактов, а из других теорий (впрочем, частично это происходит и в наше время). Производство научных теорий позволит перейти на метатеоретический уровень — к построению метатеорий. Причем все это делается с помощью описанной «информационной технологии».