Выбрать главу

Чтобы вырваться из сферы земного тяготения, надо развить скорость 11,2 км/с, чтобы покинуть Солнечную систему, необходима скорость 42 км/с. Представим себе ракету, которая мчится со скоростью 50 км/с. Ей потребуется приблизительно 26 тыс. лет, чтобы достигнуть ближайшей к Солнцу звезды — Проксимы Центавра. А чтобы побывать в отдаленных областях Галактики, понадобятся миллионы лет. Можно ли увеличить скорость ракеты?

1.15.1. Формула Циолковского.

Скорость V, достигаемая ракетой после выгорания части горючего, определяется формулой Циолковского:

V = S ln μ = 2,3 S lg μ

Здесь S — скорость истечения рабочего тела, ар. — так называемое массовое число, т. е. отношение начальной массы ракеты к конечной (после выгорания горючего), ln — натуральный логарифм, lg — десятичный логарифм. При μ = 10 V = 2,3 S. Так как μ входит в формулу под знаком логарифма, увеличивать V за счет увеличения μ крайне невыгодно. Действительно, чтобы скорость возросла всего в несколько раз, потребуется увеличить μ на несколько порядков. Следовательно, если мы хотим добиться более высокой скорости полета ракеты, надо увеличить скорость истечения рабочего тела S. Современные ракеты работают на химическом топливе, и для них S порядка нескольких км/с. Она ограничивается теплотворной способностью топлива и жаропрочностью материала двигателей. Более эффективны ракеты с плазменными двигателями, в котором роль рабочего тела выполняет пучок ионов, ускоряемых электрическим полем. В будущем они, возможно, найдут применение в космонавтике. Если в качестве топлива служит атомное горючее (т. е. используется реактор, работающий за счет распада тяжелых ядер), то максимальная скорость выхода рабочего тела S = 13 000 км/с (при стопроцентном к.п.д.). Тогда при μ = 10 конечная скорость ракеты V ≈ 0,1 с (одна десятая скорости света). И на путешествие к ближайшим звездам потребуется около 100 лет. Можно увеличить скорость истечения рабочего тела еще в несколько раз, если вместо атомного горючего использовать идеальное ядерное топливо, т.е. управляемый термоядерный реактор, работающий за счет реакции синтеза — превращения водорода в гелий. При 100%-ном к.п.д. это горючее позволяет обеспечить скорость выхода рабочего тела S = (⅛) с. В этом случае при μ = 10 скорость V ~ 0,3 с. Полет к ближайшим звездам будет длиться десятки лет (что уже можно считать приемлемым), а путешествие к границам Галактики по-прежнему будет занимать сотни тысяч лет.

Увеличивая μ, мы можем еще ближе подойти к скорости света. Но здесь формула Циолковского уже не действует. Когда скорость ракеты становится сравнимой со скоростью света, вместо формулы Циолковского надо использовать другую, релятивистскую формулу:

Чем больше скорость выхода S, тем меньше показатель степени в этой формуле и тем меньше требуемое значение μ, т. е. тем выше эффективность двигателя. Максимальная эффективность достигается при S = с, т. е. когда скорость истечения рабочего тела равна скорости света. Ракета, для которой выполняется это условие, получила название фотонной.

Рис. 1.15.1. Схема устройства фотонного корабля

1.15.2. Фотонный корабль.

Фотонная ракета работает за счет реакции аннигиляции вещество-антивещество. Продуктом ее является жесткое электромагнитное излучение (γ-кванты), поэтому скорость истечения рабочего тела равна с. Схематическое устройство фотонного корабля показано на рис. 1.15.1. При этом мы отвлекаемся от трудностей получения и хранения огромного количества антивещества: это проблемы конструкторов далекого будущего, с которыми, мы надеемся, они справятся (если сочтут необходимым создавать подобный корабль).

Рассмотрим кинематические характеристики фотонного корабля. Пусть ракета в течение некоторого времени t движется с ускорением а, после чего двигатель выключается. Если в момент остановки двигателя отношение начальной массы к конечной равно μ, то путь, пройденный ракетой в ускоренном полете, будет равен