Показательно и другое. В механике система частиц рассматривается в качестве целостности, выделенной из среды. Целостная точка зрения ведёт в данном случае к пониманию системы как образования, на которое не действуют моменты внешних сил. Напротив, механический подход предполагает, что состояние системы полностью определяется законом сохранения внутренних моментов сил и законом сохранения момента импульса. В дополнение к этим законам вводится также положение, согласно которому целостное описание системы связано с учётом её полной энергии. Данное положение обобщается до принципа, утверждающего, что энергию изолированной системы можно преобразовать из одной формы в другую, однако полная энергия в её различных формах не исчезает и не рождается из ничего.
Нетрудно установить, что классический образ предмета механического исследования строится на представлении о сохраняемости системы и устойчивости её фундаментальных параметров и законов. Механика покоится на принципе, что природа одинакова, а механическая материя сохраняет своё бытие во все моменты движения. Утверждается, например, сохраняемость массы, ритма времени, полной энергии.
Ситуация меняется, однако, в релятивистской механике. Здесь принимается во внимание равномерное поступательное движение систем друг относительно друга и устанавливается его соответствие со скоростью движения света в вакууме. Релятивистская механика учитывает, что ряд существенных параметров системы претерпевают изменения в условиях движения, близкого (соизмеримого) со скоростью света. В подобных условиях выявляется зависимость базовых параметров механических систем от пространственно-временной неоднородности материи. Здесь возникают различия между свойствами систем, фиксируемыми в покоящемся и движущемся состояниях. Тем не менее, полное описание системы строится с учетом ряда универсальных законов сохранения (сохранения импульсов, сохранения энергии и др.).
Из постулатов теории относительности зависимость длительности интервалов времени и длин отрезков от выбора инерциальной системы отсчёта. Здесь релятивистский закон сложения скоростей существенно отличается от классического закона сложения скоростей. В классической физике при переходе от одной инерциальной системы (№ 1) к другой (№ 2) время остается тем же: , а пространственная координата изменяется по уравнению В теории относительности применяются так называемые преобразования Лоренца:
В итоге модели описания механических систем существенно модернизируются [2].
Ряд особенностей в моделирование механических систем внесла квантовая механика. Она имеет отношение к описанию поведения микрочастиц или их совокупностей. В этом описании учитывается волновая (колебательная) природа микрообъектов. Вместе с тем, учитываются квантование их свойств и квантовые переходы от одного состояния частиц к другому. Характеристика волновых эффектов в динамике частиц даётся с помощью волнового уравнения Шрёдингера. В состав этого уравнения включается пси-функция, квадрат модуля которой представляет собой плотность вероятности обнаружения частицы в заданной точке. Достоверность обнаружения частицы где-нибудь в пространстве выражается с помощью условия нормирования и записывается формулой, представленной в источнике [3]. Результат определяется интегрированием знаменитой в физике особой пси-функции.
По значениям указанной функции можно вычислить спектр квантовых энергетических состояний, допустимых для частицы. Исходя из волновых представлений, частица рассматривается в квантовой механике как «локализованная» в области суперпозиции бесконечного числа волн, как волновой пакет. Частота и длина волны в центре пакета вычисляются по формулам, в составе которых задействована так называемая постоянная Планка.
Замечательным результатом квантовой механики является возможность двойственного описания её объектов: либо как волны (со своей амплитудой, частотой и длиной волны), либо как частицы (со своей массой, энергией и импульсом). Выбор описания зависит от условий наблюдения и от постановки задач в эксперименте. Существенным для квантово-механического описания системы является вывод о неустранимой неопределённости такого описания. Этот вывод тесно связан со знаменитым принципом неопределённости Гейзенберга, с помощью которого фиксируется невозможность сужения области фиксации микрочастицы точнее некоторого предела. Величина предела устанавливается из соотношения, в котором устанавливается связь энергии импульса, времени и постоянной Планка.