Выбрать главу

Кроме того, если объединение длины, ширины и глубины образует тело, то каждое из этих [измерений] или еще до этого соединения мыслится в качестве содержащего в себе самом эту телесность и эти как бы телесные моменты, или же тело [только еще] образуется после их стечения. И если каждое из этих [измерений] еще до данного объединения мыслится в качестве содержащего в себе рассматриваемую телесность, то каждое из них будет телом [само по себе], а не станет им после их объединения. Затем, поскольку тело не является ни длиной просто, ни шириной, взятой в отдельности, ни самостоятельной глубиной, но является всеми этими тремя: и длиной, и шириной, и глубиной - и каждое из этих [измерений] содержит в себе телесность, то каждое из них должно будет обладать всеми тремя [измерениями], т.е. длина окажется не просто длиной, но и шириной, и глубиной, и ширина окажется не просто шириной, но и длиной, и глубиной, и глубина одина

160

ково будет и длиной, и шириной. Это, однако, в полном смысле слова безрассуднее всего. Если же тело мыслится в своем составе только после стечения этих [измерений], то после их стечения или остается первоначальная природа длины как длины, ширины как ширины и глубины как глубины, или же она изменилась в сторону телесности [20]. Если эта их первоначальная природа остается, то, поскольку они бестелесны, она не сможет создать отличного от этого тела, но и после своего объединения они останутся бестелесными, поскольку они по природе бестелесны. Если же после схождения они изменяются в сторону телесности, то, поскольку способное к изменению тем самым уже есть тело, каждое из этих [измерений] будет телом еще до соединения в тождественном, а кроме того, еще и бестелесное станет телом. Далее, подобно тому как изменяющееся тело получает одно качество вместо другого, но тем не менее остается телом, как, например, белое - чтобы стать черным, сладкое чтобы стать горьким, вино - чтобы стать уксусом, свинец - чтобы стать белилами, и медь - чтобы стать ржавчиной, но остаются телом и черное, когда оно из 90 белого стало черным, и горькое, когда из сладкого оно стало горьким, и уксус, когда из вина он стал уксусом, точно так же и эти [измерения], когда они превращаются в тела, должны становиться вместо одних тел другими, но тем не менее оставаться телами же, поскольку они не выходят [тут] за пределы собственной природы.

Следовательно, если нельзя помыслить тела ни до схождения этих [измерений], ни после их схождения, а кроме того, нельзя придумать ничего другого, то тела [просто] не существует. К тому же если не существует ни длины, ни ширины, ни глубины, то не будет и мыслимого по причастности им тела. Но действительно не существует ни длины, ни ширины, ни глубины, как мы доказали предыдущими рассуждениями [21]. Следовательно, не будет и тела, понимаемого как нечто причастное этим измерениям.

[7. ПРЯМАЯ]

Таким образом, начала геометрии оказываются лишенными всякой реальной основы. Но с их устранением не может существовать никакое другое геометрическое положение. Действительно, каково бы ни было это последнее, оно должно быть доказано на линиях [черте

161

жей]. А мы показали [22], что никакой линии как родового понятия не существует. Из этого следует, что не существует и никакой линии в качестве вида, будет ли кто-нибудь предполагать ее в виде прямой, ломаной или имеющей какой-нибудь другой вид. Отсюда на этом, пожалуй, можно было бы и закончить наше возражение против геометров. Однако же, вступая снова в борьбу, мы попробуем показать, что, даже если мы оставим в стороне эти принципы геометрии, все равно геометры не могут ни составить, ни доказать никакой теоремы.

Однако и прежде того относительно их основных принципов можно сказать еще немало, как, например, относительно их положения, что прямая есть линия, одинаково расположенная всеми своими частями [23]. Действительно, если пройти мимо прочего, ясно [уже] то, что если не существует линии как рода, то не может существовать и прямой линии. Ведь подобно тому как при отсутствии живого существа не существует и человека, а при отсутствии человека не существует и Сократа, точно так же с устранением родовой линии должна устраниться и плоская прямая линия. Затем, и "одинаковое" высказывается в двух смыслах. В одном смысле оно есть то, что обладает одинаковой величиной, и не превосходит то, в отношении чего оно зовется одинаковым, не превосходится им, как, например, мы говорим, что палка длиной в один локоть одинакова с палкой в один локоть. В другом смысле это есть то, что обладает одинаково расположенными частями, т.е. равномерное. Так, например, мы называем почву ровной, вместо того чтобы назвать ее равномерной. Итак, если об одинаковом говорится в двух смыслах, то, когда геометры в целях определения прямой линии говорят: "Прямая линия есть та, которая одинаково расположена своими частями", - они пользуются "одинаковым" или в первом значении, или во втором. Но если в первом, то они поступают совершенно безрассудно, поскольку нет никакого смысла в том, чтобы прямая линия имела одинаковые величины своих частей и не превосходила их, и не была превосходима ими. Если же во втором смысле, то они должны будут вести доказательство при помощи того, что [только еще] исследуется, потому что существование прямой они устанавливают на основании того, что она имеет свои части расположенными равномерно и по прямой, а то, что нечто лежит на прямой, нельзя узнать без использования [уже готовой] прямой.

162

Еще нелепее рассуждают "те, кто дает такое определение: "Прямая линия есть та, которая одинаково обращается в своих собственных пределах" или такое: "...которая, обращаясь в своих собственных пределах, всеми своими частями касается плоскости". Во-первых, и эти определения подпадают под высказанные нами раньше апории. Затем, как это говорят и эпикурейцы [24], хотя прямая в пустоте есть прямая, по, однако, она здесь не вращается, потому что сама пустота не допускает движения ни цельного, ни по частям; что же касается второго определения, то оно, кроме того, впадает и во взаимодоказуемость [25]. А это дурнее всего. Именно, плоскость они определяют при помощи прямой, а прямую - при помощи плоскости, поскольку прямой является, по их мнению, та, которая касается всеми своими частями плоскости, а плоскость есть то, чего касается всеми своими частями проводимая прямая, так что для определения прямой надо сначала узнать плоскость, а чтобы узнать эту последнюю, необходимо предварительно знать прямую. Это - нелепо. И вообще тот, кто определяет прямую через плоскость, делает не что иное, как устанавливает прямую при помощи прямой же, поскольку, по их мнению, плоскость есть просто множество прямых.

[3. УГОЛ И КРУГ]

Но каково рассуждение относительно прямой, таковым же оно должно быть и относительно угла. Именно, опять-таки, когда они в целях определения утверждают, что угол есть "то наименьшее, что получается при взаимном наклонении двух прямых, не параллельных между собой" [26], то под "наименьшим" они понимают или лишенное частей тело, или то, что у них называется точкой. Однако лишенного частей тела они не могут иметь в виду, поскольку это последнее не может делиться даже па две части, в то время как угол, по их мнению, делится до бесконечности. И иначе: из углов один, по их мнению, больше, другой же - меньше. Но нет ничего меньше наименьшего тела, поскольку наименьшим является это последнее, а не [что-нибудь другое]. Следовательно, остается иметь в виду то, что они называют г точкой. А это и само относится к области апории.

163

Действительно, если точка, во всяком случае, везде является лишенной всяких промежутков, то угол не может быть подвергнут делению. Кроме того, угол не может быть больше или меньше, поскольку в том, что не обладает никаким размером, не может существовать и никакого различия по величине. И иначе: если точка попадает между прямыми, то она разделяет прямые; а то, что производит разделение, не может быть лишенным промежутков.

Но нет, некоторые из них имеют еще обыкновение называть углом "первое расстояние при наклонении [прямых]". Против них

Простое слово истины имеется [27].

А именно: указанное расстояние или не содержит в себе частей, или оно делимо. Но если оно не содержит в себе частей, то у них последуют выше высказанные апории. Если же оно делимо, то ни одно из разделенных не будет первым, поскольку, какую бы часть ни предположить первой, всегда можно найти другую, еще более первую вследствие признаваемого ими же самими деления [всего] существующего до бесконечности.