Выбрать главу

Заметим, что при этом массы всех звезд сходны между собой и редко можно встретить звезду, которая была бы в несколько десятков раз «тяжелее» или «легче» Солнца. Но отсюда сразу следует, что средние плотности звезд Должны отличаться большим многообразием.

И действительно, вещество звезд-гигантов необычайно разрежено: по своей плотности оно в тысячи раз меньше плотности комнатного воздуха. Зато среди звезд-карликов встречаются так называемые белые карлики (очень горячие маленькие звезды), средняя плотность которых в десятки тысяч раз больше плотности воды.

Современная астрофизика объяснила причины столь высокой плотности звездного вещества. В недрах белых карликов господствуют чудовищные по величине температуры и давления. Благодаря этому атомы веществ полностью ионизованы, то есть их ядра лишены обычных атомных электронов. Покинувшие «свои» ядра электроны вместе с оголенными ядрами атомов образуют сверхплотную смесь — вырожденный газ. В вырожденном газе ядра атомов, несущие в себе основную массу вещества, находятся друг к другу гораздо ближе, чем в обычных земных условиях.

Изучение физической природы звезд имеет большое значение для современной физики. Звезды недаром называют «небесными лабораториями». Наблюдая звезды, мы изучаем вещество в таких состояниях, которые подчас бывают недостижимы в земных лабораториях.

Сравнение физической природы Солнца и звезд доказывает, что Солнце по всем своим характеристикам (спектру, цвету, светимости, размерам и т. д.) является обычной, рядовой звездой.

Как уже говорилось, различия в спектрах звезд вызваны главным образом не особенностями химического состава этих объектов, а различиями в температуре звездных атмосфер. В настоящее время в астрофизике принята единая классификация звездных спектров. По характеру спектров звезды распределены на классы, каждый из которых обозначен определенной буквой латинского алфавита. Вот эти спектральные классы звезд:

    R—N

  /

К-В—A—F— G—О—М.

  \

   S

От основной группы отходят две ветви — классы R, N и S. К этим классам отнесено сравнительно небольшое число холодных звезд, в спектрах которых наблюдаются полосы молекул углерода и циана и окиси углерода (классы R и N). В спектрах звезд класса S заметны полосы окисей титана и циркония. Спектры некоторых звезд приведены на рис. 2.

рис. 2

Для более точной классификации звездных спектров по интенсивности их линий и полос поглощения введены промежуточные спектральные классы, например 05, В7, А2 и т. п. Если при этом звезда принадлежит к звездам-карликам, перед ее спектральным классом добавляют букву «d», если к гигантам — букву «g», если к сверхгигантам — букву «с» (например, (1М5, gA2 и т. д.).

Спектры некоторых горячих звезд содержат яркие, как их называют, «эмиссионные», линии и полосы. В этом случае позади обозначения спектрального класса добавляют букву «е». В тех случаях, когда спектр звезды необычен, справа добавляется буква «р» (например, 05е или F3p). Знакомство со всей этой условной символикой совершенно необходимо при использовании таблиц физических характеристик отдельных звезд.

Характерные особенности основных спектральных классов приведены в таблице.

Для того чтобы характеризовать видимую яркость, или, как правильнее говорить, блеск звезд, введены условные единицы, называемые звездными величинами.

Еще в древности наиболее яркие звезды были названы звездами первой величины, а самые слабые, еле доступные невооруженному глазу — звездами шестой величины (обозначаются 1m, 2m и т. п.). Последующие уточнения и расширения этой шкалы звездных величин заставили ввести промежуточные дробные, а для особенно ярких объектов — нулевые и отрицательные звездные величины (0m, —1m и т. д.).

Пусть I1 и I2 — блеск двух звезд, то есть освещенности, создаваемые этими звездами на приемнике энергии (глаз, фотопластинка и т. п.), а т1 и т2 — соответственно их звездные величины. Как показали детальные исследования, эти величины связаны простым соотношением, называемым формулой Погсона:

I1/I2= 2,512m2-m1