Выбрать главу

К выводу о солевом режиме архейского океана можно прийти и другим путем: сейчас общая масса карбонатов составляет 4,4±1,0 × 1020 кг, что приблизительно включает 1,8±0,4 × 1020 кг кальция. Это в 70 раз больше массы данного металла в Мировом океане, и, следовательно, значительная его часть (1,0 × 1020 кг), пребывавшая в архейском эоне в растворе, вошла ныне в состав горных пород. Анализ флюидных включений в осадочном кремнеземе и гидроокислах железа возрастом 3,5–3,2 млрд лет (Пилбара) также выявил СаCl2—NaCl солевой состав архейского океана. Там же и в поясе Барбертон обнаружены архейские морские эвапориты: пласты поваренной соли — галита (NaCl), перемежающиеся с троной [Na2(CO3) × Na(HCO3) × 2H2O] и нахколитом [Na(HCO3)]. Сейчас такие минералы формируются в щелочных (рН = 8,1) озерах, подобных Магади и Натрон в Восточно-Африканской рифтовой системе, прогревающихся до 70 °C. А вот сульфаты, такие как гипс (CaSO4 × 2H2O), характерные для наших дней и всего фанерозойского эона, в то время не образовывались, что указывает на низкий уровень содержания SO42--иона.

Еще более показательны для представления о составе архейского океана карбонаты кальция. По характерным шестоватым кристаллам с квадратным сечением, организованным в «ежики» — ботриоиды (рис. 3.1), известно, что весьма распространенным осадочным образованием был арагонитовый морской цемент (в кристаллической решетке арагонита наряду с кальцием присутствуют атомы стронция). Сами же ботриоиды были аномальной величины — более метра в диаметре. А наслоения магнезиально-кальцитового цемента, который распознается по шевроновой структуре (тонкие призмы, наклоненные в противоположную сторону в каждом последующем слое), достигали нескольких метров мощности, простираясь на десятки километров. Ныне размерность таких структур не превышает первые сантиметры, хотя океан от трех до семи раз перенасыщен карбонатом кальция. Понятно, что подобные карбонатные образования могли достигать аномальных размеров, поскольку на дне морей еще не появились ни животные с известковым скелетом, не обызвествленные водоросли или цианобактерии, которые развиваются намного быстрее неорганических кристаллов и, перехватывая поток ионов Са2+ и НСО3-, не дают им расти.

Опираясь на расчеты и особенности озер Дон-Жуан, Магади и Натрон, можно предположить, что архейский СаCl2-океан был кислым (рН = 5,5) и позднее стал щелочным. Это очевидно не так. Моделирование континентального стока, исходя из доступного для выветривания ряда горных пород и бескислородного состава атмосферы, показывает, что в океане катионы Fe2+, которые к тому же поступали из гидротермальных источников, должны были преобладать над Са2+, тем более над Mg2+ и Na+. Кроме того, с суши в больших объемах выносился бикарбонат (НСО3). Бикарбонат быстро нейтрализовал ионы Са2+, Mg2+ и Na+, что и способствовало образованию обильных карбонатов этих металлов. Так, благодаря закисному железу, которое оставалось в растворе, и карбонатно-бикарбонатному буферу океаническая среда поддерживалась ближе к нейтральной (рН = 5,7–6,9). Это не исключало появления отдельных кислых водоемов вблизи вулканически активных островов.

С сушей и океаном в какой-то степени разобрались. А что на небе — были ли там тучи, а если были, то из каких газов состояли?

Глава 4. Что и откуда мы знаем о первичной атмосфере

Но откуда и что мы знаем об архейской атмосфере — воздушной оболочке Земли, если даже от ее самой твердой оболочки мало что осталось? Основных источников знаний — три: сами горные породы и слагающие их минералы, их изотопный состав и некоторые физические особенности этих пород. Есть, конечно, и физико-химические модели, предсказывающие определенный состав атмосферы. Однако любые модели имеют множество решений и требуют проверки, которая опять же сводится к поиску фактических — геологических, включая палеонтологические остатки, — материалов.

Таким фактическим материалом, прежде всего, служат данные о составе архейских осадочных горных пород. В прибрежно-морских отложениях этого возраста часто встречаются окатанные (т. е. испытавшие длительный перенос) обломки пирита (FeS2), уранинита (UO2) и сидерита (FeCO3). Такие обломки могут накапливаться только в бескислородной среде.

Очень необычным явлением, оставившим свой след в архейских отложениях, было независимое от массы фракционирование стабильных изотопов серы (Δ33S ≈ δ34S — 0,515δ34S) (рис. 4.1б). Это явление было обусловлено воздействием ультрафиолетового облучения среднего и длинноволнового спектра (400–280 нм) на двуокись серы (SО2), поступавшую в атмосферу вместе с другими вулканическими газами. При этом молекулы, содержавшие 33S, подвергались выборочному фотолизу и фотовозбуждению (в современной атмосфере фотонный удар принимают на себя молекулы озона и кислорода). В результате значения Δ33S сильно варьируют (от –2 до +12‰), что и наблюдается в архейских сульфидах (например, пирите) в виде размашистой изотопной подписи.