Выбрать главу

В XIX веке рационализм воплотился в систему представлений – стройную, детально разработанную, проверенную экспериментами и практикой. Эта система казалась непоколебимой в своих основах, хотя и претерпевала глубокие изменения. В XIX веке люди узнали о неевклидовой геометрии, в которой перпендикуляры к одной и той же црямой пересекаются или, наоборот, расходятся. Они узнали много нового и о себе. Общественные отношения, которые представлялись незыблемыми, оказались преходящими, чреватыми социальными революциями.

Наука в этот период знала о подвижности своего русла, о его поворотах. Представления о таких поворотах были обобщены в диалектической философии. Но повороты были более или менее спорадическими. Они позволяли науке забывать о них в течение долгих периодов сравнительно спокойного развития. И, что самое главное, они не оказывали быстрого и непосредственного воздействия на жизнь людей. Наука в течение десятилетий как бы отдыхала от каждого потрясения, спокойно развивая новые принципы, которые снова, как и прежние, уже ушедшие в прошлое, казались непоколебимыми. Результаты науки приобретали ореол очевидности, и стиль научного мышления в целом не был парадоксальным. В той или иной мере парадоксы всегда были свойственны науке. В свое время мысль об антиподах, живущих на другой стороне Земли, на «нижней» ее стороне, и не падающих «вниз», была невероятно парадоксальна. Парадоксальными были представления о движении Земли, об изменении видов живых существ. Но старые парадоксы исчезали, они растворялись в научном знании, претендовавшем на очевидную правильность.

XX век начался неисчезающими научными парадоксами. Наука XX века как бы для того, чтобы оправдать подобное хронологическое название, может начать свою историю с 1900 года, когда М. Планк нашел, что излучение света происходит не непрерывно, а минимальными порциями, квантами. Вскоре, в 1905 году, А. Эйнштейн разъяснил, почему свет распространяется с одной и той же скоростью относительно тел, движущихся навстречу световому лучу, и относительно тел, которые лучу приходится догонять.

Сейчас, почти столетие спустя, подобные парадоксы должны были стать трюизмами. Этого не случилось. Парадоксы квантовой теории и теории относительности переставали быть парадоксами только при переходе науки к еще более парадоксальным утверждениям. Началась цепная реакция парадоксов. Вскоре после Планка выяснялось, что свет не просто излучается порциями, но и состоит из частиц – квантов света, фотонов. А представление о неизменной скорости света привело к еще более парадоксальным утверждениям об изменении массы тела в зависимости от скорости его движения, о возможности освобождения очень большого количества энергии при уменьшении массы тела, о превращении частиц с ненулевой массой покоя в излучение, в частицы с нулевой массой покоя, о кривизне пространства, о расширяющейся Вселенной.

Цепная реакция парадоксов оказала большое влияние не только на стиль научного мышления, но и на бытие людей, на технику, на производство, на цивилизацию в целом. В науке XIX века марши сменялись привалами. Антракты были длительнее, чем сами акты. Теперь пьеса идет без антрактов, повороты науки настолько радикальны, что их воздействие продолжается долго, причем не замедляется, не затухает, а ведет к новым, еще более парадоксальным утверждениям. Для науки XX века характерен безостановочный марш.

Соответственно изменилось понятие великого открытия. Раньше величие научного открытия измерялось длительностью сохранения его фундаментальной роли. Великим открытием считали результат эксперимента или обобщение, приводившее к новой научной теории, надолго, быть может, навсегда, сохранившей неизменной свою классическую форму и служившей фундаментом для столь же прочных выводов. Сейчас величие открытия измеряется его динамическим воздействием на науку, радикальностью и общностью его резонанса, вызванных им дальнейших открытий, дополняющих, модифицирующих и изменяющих его. Рассказать о таких великих, фундаментальных открытиях – значит рассказать об их резонансе.

В науке XX столетия меняется область, в которой получают фундаментальные открытия или ждут их. Сейчас, в последней четверти века, преимущественно ждут: значение той или иной области науки определяется прогнозом, тем преобразованием картины мира, которого можно ожидать от ведущихся в этой области исследований.

В начале столетия такой областью стала электродинамика, затем – атомная физика, потом – физика атомного ядра. Теперь ею стала физика элементарных частиц и астрофизика. Сейчас на Земле начался атомный век – результат великих открытий первой половины XX века в области ядерной физики. Можно думать, что развитие теории элементарных частиц приведет к открытиям, которые станут в XXI веке основой после-атомной цивилизации.

Для XX века характерна огромная концентрация материальных и интеллектуальных усилий общества, направленных на развитие науки. Поражают масштабы общественного труда, уделяемого исследованию природы. Наблюдаются несопоставимые с прошлым темпы роста числа ученых, уже в начале века во много раз превзошедшие темпы роста числа представителей остальных профессий. Если так пойдет и дальше, то число ученых превысит число остальных людей на Земле. Может быть, это будут кибернетические роботы? Такой прогноз оставим авторам фантастических романов о будущем. Впрочем, наверное, и они не воспользуются им. Кибернетика не заменяет человека комбинацией электронных приборов, а вооружает его и позволяет ему сосредоточиться на наиболее достойной человека деятельности, на творчестве, на все более глубоком познании природы, на все более разумном подчинении природы целям человека. Но, может быть, необычайно быстрый рост научных кадров отражает начальный этап современной эволюции науки и впоследствии число ученых будет расти медленнее. По-видимому, в течение оставшихся лет XX века и в следующем столетии будет происходить с нарастающей скоростью более глубокий и органичный процесс включения исследовательских задач в содержание труда. При быстром и радикальном изменении технологии, основанном на переходе к принципиально новым физическим процессам, производство, его реконструкция и эксперимент сливаются воедино.

В XX веке человечество уделяет науке все большую часть своих трудовых ресурсов и в том смысле, что во много раз выросли масштабы экспериментальных установок. В 1610 году Галилей опубликовал результаты своих астрономических наблюдений, и это явилось началом астрономической революции. Ныне человек посылает в космос автоматические и обитаемые астрофизические обсерватории, лаборатории и вскоре, вероятно, разместит наблюдательные приборы на орбитах планет земной группы, а может быть, и на их поверхности.

Взгляд человека, направленный не в космос, а в микромир, – это также и широкие народнохозяйственные акции, связанные с большими затратами общественного труда. Чтобы «разглядеть» процессы, происходящие в областях порядка 10-15 см и 10-25 сек., необходимы колоссальные энергии частиц, бомбардирующих другие частицы и атомные ядра. Подобные масштабы энергии встречаются в космических лучах. Но ученым нужно свободно маневрировать высокими энергиями. Очень высокие, хотя и не столь огромные энергии получают в гигантских ускорителях элементарных частиц.

Вокруг таких ускорителей вырастают большие научные города. Когда говорят о научных центрах XVII века, в сознании возникает образ придворного кружка, где Галилей критикует аристотелевскую концепцию мироздания. Научный центр XVIII века ассоциируется с уединенным кабинетом Лагранжа, где он пишет формулы аналитической механики. Научный центр XIX века – это уединенная обсерватория или лаборатория Фарадея, где он в одиночестве наматывает проволоку на железный сердечник, или (в конце века) зал Сорбонны, где Пуанкаре излагает законы небесной механики, или Петербургский университет, где Менделеев рассказывает о периодическом законе.

Научный центр XX века – это большой город (его по традиции еще называют городком), где тысячи людей трудятся, чтобы найти новый элемент периодической таблицы или новую элементарную частицу.

полную версию книги