Впрочем, все это возможно лишь в случае, если кора головного мозга не слишком пострадала. Хорошо, если префронтальная кора при нейровизуализации выглядит неповрежденной, однако уровень обмена веществ в ней значительно ниже нормы. Это значит, что кора, возможно, просто была отключена, и ее вполне можно разбудить снова. Включившись, она медленно вернется в прежнее саморегулируемое состояние. В норме многие синапсы мозга отличаются пластичностью и могут наращивать влияние с тем, чтобы содействовать стабилизации активных совокупностей нейронов. Благодаря подобной пластичности мозга связи, возникающие в рабочем пространстве пациента, могут постепенно крепнуть, и периоды сознательной деятельности при этом будут понемногу увеличиваться.
Впрочем, мы можем вообразить возможные в будущем способы лечения даже для тех, у кого пострадали сами цепочки коры головного мозга. Если гипотеза рабочего пространства верна, сознание — это не более чем гибкая циркуляция информации в плотном операционном поле нейронов коры. Нельзя ли тогда предположить, что некоторые узлы и соединения в этом поле можно заменить внешними петлями? Так, интерфейсы «мозг — компьютер», а особенно те из них, которые основаны на работе с имплантатами, потенциально способны восстанавливать дальние связи в мозгу. Вскоре мы сможем получать спонтанные сигналы мозга в префронтальной или премоторной коре и перенаправлять их в другие удаленные области — как напрямую, в виде электрических разрядов, так и более простым образом, перекодируя их в зрительные или слуховые сигналы. Такого рода сенсорные заменители мы используем уже и сегодня, чтобы научить слепых «видеть», — для этого их учат распознавать звуковые сигналы, с помощью которых кодируется изображение с видеокамеры61. Построенные по тому же принципу сенсорные заменители могут вновь закольцевать мозг на самого себя и восстановить более плотную внутреннюю коммуникацию. Возможно, благодаря более плотным петлям мозг сможет возбуждать себя сам достаточно сильно, чтобы поддерживать должный уровень активности и сохранять сознание.
Не слишком ли мы самонадеянны? Время покажет. Одно можно сказать наверняка: интерес к коме и вегетативному состоянию вновь пробуждается и, будучи подкреплен надежной теорией сознания как порождения нейронных цепочек, повлечет за собой крупные прорывы в медицине. Революция в области лечения нарушений сознания уже совсем не за горами.
7. Будущее сознания
Нарождающейся науке о сознании предстоит преодолеть немало трудностей. Сможем ли мы точно определить момент зарождения сознания у новорожденного младенца? Сможем ли узнать, сознают ли происходящее вокруг себя обезьяна, собака, дельфин? Сможем ли решить загадку самосознания — удивительной способности думать о том, что мы думаем? Уникален ли в этом отношении человеческий мозг? Существуют ли в человеческом мозгу характерные только для него цепочки, и если да, то можно ли объяснить их дисфункцией такое чисто человеческое заболевание, как шизофрения? И наконец, сможем ли мы, проанализировав эти цепочки, продублировать их на компьютере и создать таким образом искусственный интеллект?
Не по вкусу мне как-то, чтоб наука совала нос в мои дела, — какое ее дело? Наука уже подмяла под себя добрую долю всего вокруг — не хватит ли? Так ли уж ей нужно добраться и до неосязаемого, невидимого, сокровенного нашего «я»?
По сути, чем величественнее наука, тем сильнее ощущение тайны.
Итак, черный ящик сознания открыт. Используя разнообразные экспериментальные парадигмы, мы научились делать видимыми или невидимыми одни и те же изображения, а затем фиксировать рисунок нейронной активности, возникающий лишь при доступе в сознательное восприятие. В том, как мозг обрабатывает видимые и невидимые изображения, мы разобрались куда лучше, чем предполагали первоначально. Мы отыскали множество электрофизиологических автографов, свидетельствующих об активации сознания. Эти автографы сознания оказались настолько надежны, что теперь их используют в больницах для поиска остаточного сознания у пациентов с серьезными травмами мозга.