Выбрать главу

Еще в 20-е годы XX века австрийский исследователь-нейроанатом Константин фон Экономо заметил, что области эти распределены в мозгу неравномерно. Значительно толще они становятся в префронтальной и поясной коре, а также в ассоциативных областях теменной и височной долей, то есть на участках, которые имеют массу внутренних связей и активируются в ходе сознательного восприятия и обработки данных.

Позже Гай Элстон из Квинсленда и Хавьер ДеФелипе из Испании отметили необычайную величину дендритов, то есть принимающих антенн этих гигантских нейронов рабочего пространства. За счет величины дендритов нейроны особенно успешно принимали информацию, поступающую из множества отдаленных областей мозга19. С помощью дендритов (от греческого слова «дерево»), то есть ветвящихся структур — приемников сигнала, пирамидальные нейроны получают информацию от других нейронов. Там, где у подающих сигналы нейронов развивается синапс, у принимающего нейрона появляется микроскопическое образование, называемое отростком и представляющее собой грибообразный вырост. Отростки плотно покрывают ветвящийся древовидный дендрит. Элстон и ДеФелипе продемонстрировали важнейший для гипотезы рабочего пространства факт: оказывается, в префронтальной коре дендриты значительно крупнее, а отростки — гораздо многочисленнее, чем в задних отделах мозга (рис. 26).

Рисунок 26. Крупные пирамидальные нейроны приспособились к трансляции осознанной информации на большие расстояния, особенно в префронтальной коре. Кора головного мозга имеет слоистую структуру, и в слоях II и III располагаются крупные пирамидальные нейроны с длинными аксонами, необходимыми для передачи информации в отдаленные регионы. В префронтальной коре эти слои оказываются значительно толще, нежели в сенсорных областях (сверху). Большая толщина слоев II и III характерна примерно для тех же областей, которые проявляют максимальную активность во время сознательного восприятия. Кроме того, эти же нейроны приспособились к восприятию поступающих с большого расстояния сообщений. Древовидные дендриты (внизу), получающие сообщения из других областей, в префронтальной коре становятся значительно крупнее, нежели во всех прочих областях. Все перечисленные средства адаптации к обмену информацией на большом расстоянии выражены в человеческом мозгу сильнее, нежели в мозгу других приматов.

В человеческом мозгу эти механизмы адаптации к протяженным коммуникациям заметны особенно хорошо20. Наши префронтальные нейроны ветвятся сильнее и содержат больше отростков, чем нейроны наших родственников-приматов. У них дендритные джунгли находятся под контролем семейства генов, которые мутировали особым образом только у человека21. В этот перечень входит FoxP2 — известнейший ген, две мутации которого произошли только в ветви Homo22. Этот ген управляет нашими речевыми структурами23, а сбой в нем ведет к обширному поражению механизмов артикуляции и речи24. В семейство FoxP2 входят несколько генов, отвечающих за формирование нейронов, дендритов, аксонов и синапсов. Воспользовавшись всем богатством возможностей, которые дарует генная инженерия, ученые вырастили мышь с двумя человеческими мутациями FoxP2 — пирамидальные нейроны у этой мыши заветвились нетипичными, по-человечески крупными дендритами, а сама мышь стала проявлять недюжинные способности к учению (правда, все же не заговорила)25.

Благодаря гену FoxP2 и всему его семейству каждый нейрон префронтальной коры у человека содержит по 15 тысяч отростков и более. Это значит, что он связан почти с таким же количеством других нейронов, по большей части расположенных в очень отдаленных частях коры и зрительного бугра. Похоже на идеальный адаптивный механизм — можно собирать информацию по всему мозгу, а если она окажется достаточно важна, передавать ее снова в тысячи других точек.

Предположим, мы получили возможность проследить все связи, которые активируются, когда мы осознаем и распознаем чье-то лицо — вроде как ФБР прослеживает звонок, идущий через несколько последовательных коммуникационных узлов. Что мы увидим? Вначале входящий образ будет приведен в порядок очень короткими каналами связи, расположенными в сетчатке глаза. Сжатый образ последует дальше по толстому кабелю оптического нерва, достигнет зрительного бугра и отправится в первичную зрительную область затылочной доли. Местные U-образные волокна передадут его в несколько кластеров нейронов правой веретенообразной извилины, где исследователи обнаружили кластеры распознания лиц, то есть участки нейронов, настроенные на работу с лицами. Вся эта деятельность будет происходить без участия сознания. А дальше? Куда дальше поведут связи? Живительный ответ на этот вопрос отыскала швейцарская исследовательница Стефани Кларк26: удаленные аксоны вдруг разом отпускают зрительную информацию распространяться практически по всем уголкам мозга. Крупные каналы, исходящие из правой нижней височной доли, напрямую за один синаптический импульс отправят данные в отдаленные области ассоциативной коры, в том числе в другом полушарии. Информация станет накапливаться в нижней фронтальной коре (центр Брокá) и в височном отделе ассоциативной коры (зона Вернике). Обе эти зоны являются ключевыми пунктами речевой сети человеческого мозга, поэтому на данном этапе к поступающей зрительной информации начнут присоединяться слова.