Выбрать главу
Що дужче, то менше

Розвиток фізики частинок, що полягав у відкритті багатющого бестіарію дивовиж, відвернув увагу від систематичного пошуку глибших структур. У фізиків було забагато роботи з вивченням цілого звіринцю нових частинок та їхньої непередбачуваної поведінки. Втім, фізики не забули про досвід Резерфорда.

Зв’язок між енергією зонду, який виконує роль такого собі скальпеля, та розмірами досліджуваного об’єкта випливає з квантової механіки: розміри, яких можна досягнути під час експерименту з дифузії, відповідають довжині хвилі, випромінювання, за допомоги якого вивчають матерію. Щоби бачити глибше, треба бити сильніше, тож прискорювачі постійно збільшують енергетичну потужність.

Побачити якийсь об’єкт крізь оптику означає зібрати на сітківці ока фотони, передані або відображені цим об’єктом. У цьому випадку носієм інформації виступає видимий фотон, довжина хвилі якого приблизно дорівнює одному мікрону. Він дозволить розрізнити деталі відповідних розмірів. Наприклад, простим оком можна побачити волосину діаметром приблизно 20 мікронів. Оптичний мікроскоп лише концентрує світло, але не змінює довжини хвилі. Аби вирізнити менші деталі, слід скористатися електронним мікроскопом. Цей прилад використовує потоки електронів, прискорених завдяки електричній напрузі до енергії в тисячі разів більшої, ніж енергія оптичних фотонів (кеВ). Таким чином стають доступними розміри атомного рівня. Резерфорд використав у тисячу разів потужніше (МеВ) випромінювання, аби зондувати ядро. Космічні промені дають, як ми вже мали змогу побачити, цілком природну можливість піти ще далі, проте умови використання — ризиковані. В систематичних обчисленнях економити на прискорювачах не можна.

Природа зонда, що використовується, також є дуже важливою. Обраний зонд не повинен бути структурою на тому ж рівні розмірів, на якому відбувається дослідження. Так, прискорений протон можна уявити як торбу, повну кварків, що ділять між собою сукупну енергію частинки-снаряду. Коли протон взаємодіє, на елементарному рівні кварків не можна з точністю сказати, яку саме енергію має задіяний складник. Оскільки кварки не здатні вільно являтися, той, який взаємодіє, перш ніж дати себе виявити, «вдягається», через що виміряти безпосередню енергію дифузії дуже складно.

Тож, аби вивчити внутрішню будову матерії, за зонди взяли електрони. Хоч би якою була шкала, вони завжди будуть на ній цятками. Згодом дуже цінними інструментами дослідження елементарної структури стануть і нейтрино.

Завдяки прискорювачеві електронів, зведеному у Стенфорді, — він досягає потужності у 100 МеВ, що відповідає довжині хвилі, меншій за 10-15м, — і техніці, винайденій Резерфордом, Роберт Гофстедтер взявся визначити розміри та внутрішню структуру протону. У 1961 р. він отримав Нобелівську премію за «електронну дифузію та структуру нуклона».

Пошуки тривали завдяки новому прискорювачеві, зведеному у велетенському університетському містечку у Стенфорді та названому чудовиськом через розміри, які в ті часи могли видатися величезними. Будівництво було завершене 1966 р., прискорювач лінійного типу був задовжки 4 км. Цю пряму, що перетинає пагорби, легко побачити з літака перед приземленням у Сан-Франциско. SLAC — Стенфордський лінійний прискорювач дозволяв електронам досягати енергії, яка тоді вважалася колосальною — 20 ГеВ. Дослід із дифузією, здійснений завдяки цьому приладові, 1990 р. приніс Нобелівську премію Джеромові Айзекові Фрідману, Генрі Вею Кендоллу та Ричардові Едвардові Тейлору за «глибоко непружну дифузію електронів і кваркову модель». На другому етапі стенфордський прискорювач було модернізовано, і 1990 р. його енергія могла сягати рівня 50 ГеВ.

Два уточнення. Енергія електронів рівня 20 ГеВ вважається колосальною, хоча з 1958 р. такого рівня досягали протони. Але з електронами досягти високого рівня енергії значно важче. Адже маса в них невисока, і випромінюють вони слабувато — електрони втрачають енергію, коли хтось намагається змінити траєкторію їхнього руху, що пояснює, чому прискорювачі електронів із високим рівнем енергії є переважно лінійного типу. Масивніші протони поглинають усю приступну енергію. Втрати енергії, яких вони зазнають через викривлення траєкторії в магнітному полі, починаються з рівня енергії, досягати якого нині навчилися.

До речі, з відкриттям Ω-баріона кваркову структуру адронів було затверджено. Але про це дізналися з даних щодо симетрії, а не завдяки динамічному виявленню. Експерименти з дифузією намагалися знайти структуру протона у вигляді твердих об’єктів, що їх називали партонами, тобто невеличкими частинками. Це підтвердив дослід у Стенфорді. Згодом партони ототожнили з кварками, але партони виходили за межі трьох уже описаних типів кварків, названих кварками валентності, оскільки вони передають свої властивості частинкам. У протоні повно партонів, адже поруч із введеними кварками існує безліч пар кварк-антикварк, що їх нині ми навчилися майстерно зондувати.