Головна перевага Стандартної моделі — рівень елементарності, якого пощастило досягнути завдяки відкриттю кварків і лептонів, а головний об’єднуючий принцип — незмінність об’єму, згідно з яким фундаментальні взаємодії випливають із незмінності в операціях симетрії, що залежать від просторово-часової точки, в якій їх застосовано. Виникла загроза нової перешкоди: кварки з’являються у трьох різних формах. Кожен має свій «колір» — це допомагає вирішувати деякі проблеми у статистиці, які трапляються за складання елементарних частинок, а також за вимірювання ефективного перерізу ексклюзивних процесів.
Модель ґрунтується на багатьох компонентах. Передусім вона спирається на сукупність елементарних складників, розподілених на три сімейства — їхні характеристики визначено експериментальним способом впродовж останніх десятиріч. Точні обрахунки на колайдері LEP стали кульмінацією пошуків, довівши когерентність теорії на рівні 10-18 м, відповідно до розмірів частинок.
Враховуючи ці результати, на сучасному рівні елементарності відкрито все. Це дивним чином нагадує пророцтво лорда Кельвіна48 — буцімто наприкінці ХІХ ст. фізику вже було вичерпано! LEP поклав край пошукам нових елементарних об’єктів, подібних до вже досліджених. Але це не означає, що заперечувалося будь-яке дослідження в цьому напрямку! Міг існувати і вищий рівень елементарності, який об’єднував би, скажімо, кварки й лептони. Звісно, сучасні дослідники прямують не цим широким трактом, проте одного дня вони повернуться до альтернативного напрямку.
Останній компонент Стандартної моделі відомий під назвою «спонтанний розрив слабкої електромагнітної системи». До нього ми ще повернемося — це явище пов’язане з уже оголошеним майбутнім відкриттям нової частинки зі спіном 0, яку називають скалярною — бозона Гіґґза.
Сага про дослідження нейтрино — це історія, що тягнеться паралельно з історіями інших частинок. Проте у жменьці елементарних складників нейтрино посідають чільне місце — це один із компонентів, необхідних для розуміння феноменології частинок і, як наслідок, еволюції Всесвіту. Нині нейтрино цікавиться невеличка затята група, далека від більшості вчених. Ці марґінали збираються на власні конференції. Певною мірою на це впливає зачарування незвичною частинкою, яка приховує ще чимало несподіванок. Винаходили її відчайдушно, експериментально виявляли карколомно, друге нейтрино відкрили випадково, та й перші щілини у Стандартній моделі з’явилися саме в цьому місці.
Ми намагаємося розповісти про технологічні звитяги, на які довелося піти заради прогресу. Тому необхідно описати архетип детекторів нейтрино: японський прилад «СуперКаміоканде». Він посідає окреме місце в шерезі пристроїв, що позначили розвиток фізики частинок.
Під суто технічним кутом зору цей прилад не є революційно новим. Унікальні його розміри. Ми вже писали про складність виявлення нейтрино. Нейтрино середньої енергії може перетнути Землю, не залишивши ані найменшого сліду: для нейтрино Земля — прозора. На щастя, не абсолютно прозора, проте ймовірність зупинити нейтрино, що летить із Сонця і перетинає Землю, складає один шанс на мільярд. Тож, аби збільшити шанси на значне накопичення актів, потрібна велика кількість нейтрино та обладнання якомога більших розмірів.
Детектор «СуперКаміоканде» — це резервуар величезних розмірів, наповнений очищеною водою. Його об’єм — 50 кілотонн — приблизно в сім разів більший за вагу Ейфелевої вежі. Це — циліндр заввишки 40 м і діаметром 40 м. Усередині можна звести п’ятнадцятиповерховий будинок. Поверхню циліндра вкривають «очі» — величезні рурки фотоелектронних помножувачів. У діаметрі вони сягають 40 см та виготовляються спеціально для цього експерименту. У сумі по всій поверхні детектора розташовано 11 тисяч фотоелектронних помножувачів.
Дослід приніс два надважливі результати.