Выбрать главу

Насамперед він підтвердив те, що впродовж більше ніж тридцяти років називали дефіцитом сонячних нейтрино. Щосекунди Сонце надсилає потік у 60 мільярдів нейтрино на кожен квадратний сантиметр земної поверхні. Це — нейтрино електронного типу, утворені у осередді Сонця. Однак упродовж довгого часу результати показували від третини до половини очікуваного обсягу потоку. Висунули теоретичну гіпотезу: нейтрино перетворюються, себто здатні спонтанно змінювати тип. Електронне нейтрино, утворене в осередді Сонця, під час подорожі від точки утворення до точки виявлення перетворюється на мюонний або тау-нейтрон. Авжеж, ішлося лише про припущення, проте дуже привабливе, адже воно було справедливе тільки для нейтрино з ненульовою масою. А здоровий глузд наполягав на тому, що нейтрино таки мають масу — так само, як інші частинки матерії. Проблема полягала в дуже низькому гаданому рівні маси — адже одразу після відкриття нейтрино, щоб пояснити радіоактивність, поставили обмеження в менше ніж одну тисячну від маси електрона.

Завдяки рясній статистиці — за кілька років спостережень було виявлено більше 10 тисяч актів, — «СуперКаміоканде» спромігся з’ясувати специфіку коливання та поставити точніше обмеження на масу. Коливання фіксує лише різницю між масами нейтрино, які беруть участь у процесі. Згодом один експеримент у Канаді, відомий під назвою SNO (Спостереження нейтрино у Садбері), завдяки мішені з важкої, а не звичайної води, зміг підтвердити явище взаємоперетворення, не лише виявивши зменшений потік електронних нейтрино, а й визначивши потоки нейтрино інших типів. Загальний потік нейтрино всіх трьох типів, як з’ясувалося, повністю відповідав теоретичним розрахункам утворення сонячних нейтрино. А експеримент у Японії, що дослідив нейтрино з великим діапазоном у ядерних реакторах, ще більше уточнив параметри коливання. Кінцевий результат можна тлумачити як зміну невеликої маси нейтрино другого типу — приблизно 9 меВ/с2. Це повністю вписується у простий сценарій ієрархії трьох нейтрино.

Проте «СуперКаміоканде» на цьому не зупинився. Детектор не лише перевірив претворення сонячних нейтрино, а й засвідчив перетворення атмосферних нейтрино, підтверджених двома скромнішими експериментами. Перший проходив на «Каміоканде» — резервуарі на 1 кілотонну води, попередникові «СуперКаміоканде». Перші отримані результати не переконали наукової спільноти, тож задля визнання явища знадобилися точніші дані.

Атмосферичні нейтрино утворюються внаслідок бомбування первісними космічними променями — переважно протонами високих енергій — високих шарів атмосфери. Серед вторинних частинок, що утворюються, є мезони, які розпадаються так само, як і в жмуті нейтрино в прискорювачі. Одержані нейтрино — суміш двох типів, електронного і мюонного. Вони походять з усіх горизонтів, оскільки атмосфера вкриває більш або менш однаковою оболонкою всю земну поверхню.

Детектор «СуперКаміоканде» здатен розрізняти як взаємодії, викликані електронними нейтрино, так і взаємодії, викликані мюонними нейтрино. Та якщо, згідно з розрахунками, потік електронних нейтрино б’є в детектор в усіх напрямках, мюонні нейтрино демонструють механізм, унаслідок якого нейтрино, що перетинають Землю — проходячи її наскрізь між протилежними точками — нібито зникають. Тут також можна згадати явище перетворення: електронні нейтрино не перетворюються на відміну від мюонних в експериментальних умовах — тобто за енергії в середньому 1 ГеВ та на відстанях, тотожних діаметрові Землі, 13 тис. км. Згодом цей результат було підтверджено дослідом на прискорювачі, докладна інформація про пучок у якому дозволила провести складніший аналіз. Це не суперечить результатові, отриманому з сонячними нейтрино з набагато нижчою енергією — близько 10 МеВ — та з набагато більшою відстанню.

Отже, вимальовується переконлива схема фізики нейтрино — з трьома частинками з ненульовими масами, дві з яких (найбільші) нам відомі: 9 меВ/с2 для мюонного та 50 меВ/с2 для електронного нейтрино. Це — найпростіша схема, адже перетворення фіксують лише різницю між масами. Отже, нейтрино таки посідають масу — і цей висновок завершує тривалу дискусію, що розпочалася з відкриття першого нейтрино.

Стандартна модель ґрунтувалася на припущенні відсутності маси в нейтрино. Це спрощення пояснювали попередніми експериментальними результатами, нібито справедливими за нульової маси нейтрино. Отже, Стандартна модель виявилася неповною, і всіх це влаштовувало — отак легко заткнули першу тріщину. Нині масивні нейтрино стали невід’ємною частиною Стандартної моделі, навіть якщо таке рішення — не єдине. Масивні нейтрино потребують інших нейтральних об’єктів з великими масами — саме в цьому напрямку повинні відбуватися експерименти.