Выбрать главу

На кафедре, руководимой С. А. Балезиным, впервые в СССР были разработаны и внедрены универсальные смеси ингибиторов для защиты от коррозии котельных сталей при химической очистке их растворами лимонной, уксусной, адипиновой, яблочной, муравьиной и других органических кислот при температуре 170 °С. Это, как правило, смеси азот- и серосодержащих ингибиторов,. Эти ингибиторы слабо влияют на скорость растворения минеральных отложений на металле и вместе с тем сильно тормозят растворение самого металла. Поэтому на его растворение расходуется незначительная часть кислоты.

С. А. Балезиным, Ф. Б. Гликиной и В. А. Карповым [284, 364] исследована коррозия и защита стали-10 в циркулирующих при 100°С растворах адипиновой и фталевой кислот, применяемых для очистки оборудования в теплоэнергетике. Оказалось, что в разбавленных растворах адипиновая кислота в основном ведет себя по отношению к железу как электролит, а в более концентрированных растворах — как комплексообразующий агент [292]. Скорость анодного растворения железа зависит не только от кислотности раствора, но и от природы и концентрации анионов. Для растворов этих кислот исследователи рекомендовали высокоэффективные смеси ингибиторов.

В теплоэнергетике для снятия отложений с поверхности металла широко используются также комплексны и композиции на их основе. В этой связи С. А. Балезин, Ф. Б. Гликина и И. С. Михальченко [322, 324, 325, 353, 362, 390] провели серию исследований коррозии стали в растворах наиболее распространенных комплексонов: нитрилотриуксусной кислоты (НТА), диэтилентриаминпентауксусной кислоты (ДТПА), гексаметилендиаминтетрауксусной кислоты (ГМДТА), 2-оксиэтилиминоуксусной кислоты (2-ОЭИДА) и этилендиаминтетрауксусной кислоты (ЭДТА).

Показано, что комплексны выполняют две функции: кислот и комплексообразующих реагентов. С железом они образуют хорошо растворимые комплексные соединения, и, чем прочнее эти комплексные соединения, тем легче ионизируется металл, т. е. скорость коррозии увеличивается.

Была найдена зависимость скорости коррозии (р) от констант диссоциации комплексонов и констант нестойкости комплексонатов железа:

ρ = а [рКнесг — (рКдис I, + рКдис II)] + b,

где а и b не зависят от условий опыта; рКнесг — рК нестойкости наиболее прочных в этих условиях комплексонатов железа; рКдис I и рКдис II — рК диссоциации комплексонов по первой и второй ступеням.

В условиях опыта (pH = 2 ÷ 4) комплексоны диссоциируют в основном по первой и второй ступеням, отщепление же следующих протонов происходит при более высоких значениях pH. Это уравнение выполняется в обескислороженных растворах, в присутствии же кислорода имеются отклонения. Полученное уравнение позволяет предсказать коррозионную активность растворов различных комплексонов.

В ходе экспериментов проводилось сравнение применяемых при химических очистках комплексообразующих веществ по агрессивности к котельным сталям, а также по эффективности удаления окалины и ржавчины с поверхности металлов. Многие комплексоны давно широко использовались в химической очистке котельного оборудования, но часто без ингибиторов, что приводило к нарушению поверхности металла и непроизводительному расходу дорогостоящих реагентов. Авторами указанных работ был сделан вывод о необходимости ингибирования всех комплексообразующих растворов. Для защиты стали-10 от коррозии в растворах трилона «Б» и композиций на его основе (t = 100°) были предложены смеси 0,03% тиомочевины +0,1% катапина, 0,03% тиомочевины +0,05% И-I-А, 0,03% мочевины +0,1% И-I-В и 0,03% каптакса +0,1% катапина, которые обладают высоким защитным действием.

На основании электрохимических измерений был сделан вывод о хемосорбционном механизме действия этих смесей ингибиторов. Исследователи высказали предположение о том. что анодный процесс в растворах трилона «Б» складывается из двух параллельно протекающих реакций: на участках, запятых адсорбированным реагентом, — с участием комплексона, на свободных участках — с участием ОН- и Н+-ионов. Найдено, что адсорбция трилона «Б» на железе зависит от потенциала. Полученные результаты позволили предложить схему суммарного электродного процесса.

В последние годы большая часть эксплуатационных химических очисток барабанных парогенераторов проводится при повышенных давлениях 5 • 105—8 • 105 Па и температуре 150—170°. В этом случае для растворения оксидов железа и меди используются в основном композиции трилона «Б» с органическими кислотами (лимонной, малеиновой, фталевой и др.). Поэтому очень важно обеспечить надежную защиту металла от коррозии в таких растворах.