Выбрать главу

Гипотеза Бёрча и Швиннертона-Дайера

Математики были всегда очарованы проблемой описания всех решений целых чисел х, у, z и алгебраическими уравнениями типа

х2 + у2 = z2.

Евклид дал полное решение данного уравнения, но для более сложных уравнений решение становится крайне трудным. Действительно, в 1970 году Ю. В. Матусевич показал, что десять проблем Гилберта являются нерешаемыми, так как нет общего метода определения того, когда такие уравнения имеют решения в целых числах. Но в некоторых случаях можно на что-то надеяться. Когда решения являются точками абелианского множества, гипотеза Бёрча и Швин-нертона-Дайера утверждает, что часть группы рациональных точек описывает поведение соединенной «зета» функции z (s) около точки s = 1. В частности, эта удивительная гипотеза утверждает, что если z(1) равно или приближается к нулю, то там есть бесконечное число рациональных решений, и, соответственно, если z (1) не равно нулю, то там есть только конечное число таких решений.

Проблемы описания действий над целочисленными множествами с помощью алгебраических уравнений типа

х2 + у2 = z2

на современном этапе решаются с привлечением ЭВМ и на основе использования достаточно простых алгоритмов, огромного объема вычислений и на последнем этапе — отбора полученных решений по определенным критериям.

Хотелось бы подчеркнуть, что в описанной задаче неявно просматривается идея Каббалы — самозначимость множества цифр, которым придается сакральное значение. Ведь что такое “единица»? Это ступенька перехода количества в качество, когда набор каких-либо элементов (однородных или неоднородных) образует объем, определяемый и выделяемый из окружающего мира: атом, кирпич, человек, Солнечная система и пр. Придавать единице особое, мистическое, значение вред ли целесообразно.

Однако у многих математиков всегда присутствует желание свести все к единым, по возможности целочисленным решениям и, соответственно, к единой формуле. Конечно, идеальное представление позволяет более или менее адекватно представить окружающую нас Вселенную, но не всегда и не везде действуют законы простых чисел. В частности, в особых точках (нуле или разрыве функции) решения всегда значительно усложняются. Математически это ведет к неоднозначности результатов и по формальным признакам дает возможность спекулятивных (как толковали «многозначность» в средневековье) решений. Но при математических преобразованиях теряется смысл этих решений. Нуль и единица, относящиеся к любому конкретному объекту, обозначают всего лишь его отсутствие или этап для дальнейшего счета. Поэтому разговор о стремящемся к нулю или равном нулю объекте физической Вселенной представляется уходом в ту область, откуда (при определенных граничных условиях) может появиться либо этот предполагаемый объект, либо нечто иное, либо вообще ничего.

В области вблизи единицы тоже не для всех объектов ясно, что надо прибавить или убавить для того, чтобы исследуемый объект оставался именно тем, чем мы его считаем.

В гипотезе, естественно, есть определенный практический смысл, но возникает вопрос о полноте отображения граничных условий при исчезающе малых их значениях или вообще при их отсутствии, а это уже — типичный случай выбора стратегии аналогово-цифрового аппарата.

Гипотеза Пуанкаре

Если мы натянем резиновую ленту вокруг поверхности яблока, то затем мы можем медленно стянуть ее вниз, в точку без разрыва, и не допуская соскальзывания с поверхности. Если же мы представим себе, что в другой руке такая же лента натянута вокруг бублика, то понятно, что невозможно стянуть резиновую ленту к такой же точке без разрыва ленты или разрушения бублика. Мы говорим, что поверхность яблока «просто соединена» (непрерывна), а поверхность бублика — нет. Пуанкаре больше ста лет назад понял, что двухмерная сфера существенно характеризуется этим свойством «простого соединения», и поставил вопрос о трехмерной сфере (набор точек в четырехмерном пространстве на одинаковом расстоянии от рассматриваемой фигуры-оригинала). Этот вопрос очень труден, и математики бьются над его решением до сих пор.