Выбрать главу

Что касается звезд, то здесь требуемая тонкая настройка сопряжена с еще более жесткими условиями. Реакции термоядерного синтеза, протекающие в звездах, обеспечивают два ключевых процесса, необходимых для эволюции жизни: образование энергии и производство тяжелых элементов типа углерода и кислорода. Чтобы звезды сыграли именно эту роль, они должны развиваться длительное время, достигнуть достаточно высоких центральных температур и быть достаточно распространенными объектами во Вселенной. Чтобы все эти составляющие головоломки встали на свои места, Вселенная должна быть наделена обширным диапазоном особых свойств.

Наверное, самый понятный пример может предоставить нам ядерная физика. Реакции термоядерного синтеза и ядерная структура зависят от величины сильного ядерного взаимодействия. Атомные ядра существуют как связанные структуры, потому что сильное взаимодействие способно удерживать протоны рядом друг с другом, даже несмотря на то, что сила электрического отталкивания положительно заряженных протонов стремится разорвать ядро. Если бы сильное взаимодействие было чуть-чуть слабее, то тяжелых ядер попросту не было бы. Тогда во Вселенной не было бы углерода, а следовательно, и тех форм жизни, в основе которых лежит углерод. С другой стороны, если бы сильное ядерное взаимодействие было еще сильнее, то протоны могли бы объединиться в пары — «ди-протоны». В этом случае сильное взаимодействие было бы таким мощным, что все протоны во Вселенной объединились бы в ди-протоны или в структуры покрупнее, и обычного водорода просто не осталось бы. В отсутствие водорода во Вселенной не было бы воды, а следовательно, и известных нам форм жизни. К счастью, наша Вселенная имеет как раз такую величину сильного взаимодействия, чтобы разрешить водород, воду, углерод и прочие необходимые составляющие жизни.

Аналогичным образом, имей слабое ядерное взаимодействие несколько иную величину, это значительно повлияло бы на звездную эволюцию. Если бы слабое взаимодействие было мощнее, то ядерные реакции в недрах звезд протекали бы с гораздо большими скоростями, в силу чего значительно сократилась бы продолжительность жизни звезд. Также пришлось бы поменять и название — термин «слабое взаимодействие» не годился бы. В этом вопросе у Вселенной имеется некоторая отсрочка, обусловленная диапазоном масс звезд: небольшие звезды живут дольше и могут управлять биологической эволюцией, как наше Солнце. Однако давление вырожденного газа (из квантовой механики) прекращает сжигание водорода, как только масса звезды становится слишком маленькой. Таким образом, серьезно уменьшилась бы продолжительность жизни даже самых долгоживущих звезд. У звезд, максимальное время жизни которых ниже отметки в миллиард лет, развитие жизни под угрозой. Фактическое значение слабого взаимодействия в миллионы раз меньше сильного, благодаря чему Солнце сжигает свой водород медленно, что и требуется для эволюции жизни на Земле.

Ну а далее — планеты, самые маленькие астрофизические объекты, необходимые для жизни, но, может быть, самые важные. Образование планет требует от Вселенной производства все тех же тяжелых элементов, а значит, все ограничения и условия, которые мы только что обсуждали, так же важны. Кроме того, существование планет требует, чтобы Вселенная была достаточно холодна для конденсации твердых тел. Если бы наша Вселенная была всего в шесть раз меньше, чем сейчас, и, следовательно, в тысячу раз горячее, то частицы межзвездной пыли испарились бы, и для образования каменистых планет попросту не было бы «строительного материала».

Еще одна очень важная вещь — долгосрочная стабильность Солнечной системы непосредственно с момента ее образования. В нашем галактическом пространстве сближения и взаимодействия звезд одновременно редки и слабы из-за их очень низкой плотности. Если бы наша галактика содержала такое же количество звезд, но была в сто раз меньше, повышенная плотность звезд привела бы к достаточно высокой вероятности вхождения в нашу Солнечную систему какой-то другой звезды, которая разрушила бы орбиты планет. Подобное космическое столкновение могло бы изменить орбиту Земли и сделать нашу планету необитаемой или вообще выбросить Землю из Солнечной системы. В любом случае такой катаклизм означал бы конец жизни. Но в окрестностях нашей галактики предполагаемое время наступления такого события намного превышает время, необходимое для развития жизни.