Выбрать главу

Для каждого промышленного ВВ установлены минимумы таких расстояний (х).

Рис.13 Схема испытания ВВ на передачу детонации.

На грунте укладывают два патрона на расстоянии, указанном в ТУ. Если при двух взрывах отказов не произошло, то ВВ считают выдержавшим испытания. Если произошел отказ, то количество испытаний увеличивают вдвое. При повторном отказе бракуется вся партия ВВ При испытаниях ВВ, поступивших в мешках, изготавливают патроны диаметром 31 ± 1 мм, длиной 200 ± 10 мм при плотности заряда ВВ 0,95-1,05 г/см3. Водоустойчивые ВВ испытывают после их выдержки в воде в течение 1 часа на глубине 1 м.

2.6 Термодинамика процессов горения и взрыва

Работоспособность взрывчатого вещества как источника энергии определяется теплотой взрыва (теплотой взрывчатого превращения). Часто в связи с этим о ВВ говорят как о своеобразной тепловой машине, которая, в конечном счете, превращает потенциальную энергию в механическую работу. В результате взрыва ВВ работу в окружающей среде совершают в процессе расширения нагретые и сжатые продукты взрыва (ПВ). Таким образом, одним из условий взрывчатого превращения является экзотермичность процесса. Тепло, выделяемое при взрыве, сильно влияет на сам характер взрыва, на температуру и давление ПВ, бризантность и работоспособность ВВ.

2.6.1 Тепловой эффект реакции взрыва. Закон Гесса

В инженерной практике определение теплового эффекта реакции взрывчатого превращения производят в соответствии с первым началом (законом) термодинамики и важнейшим законом термохимии - законом Гесса. 

Согласно первому началу термодинамики вся теплота, сообщенная системе, расходуется на изменение внутренней энергии системы, а также на совершение работы системой: 

Q=U+А или Q=dU+А

где U – внутренняя энергия; А – работа.

Для случая изобарного процесса (при постоянстве давления Р=const) это уравнение, определяющее тепловой эффект реакции взрыва QP, примет вид:

QP=dU+PdV=d(U+PV) или QP=dН

где величина Н=U+PV называется энтальпией. Энтальпия является функцией состояния системы и определяется ее параметрами.

В случае изохорного процесса (при постоянстве объёма V=const) тепловой эффект реакции взрыва равен

Qv=dU или Qv=U(298)=Н(298)-n·R·298

где n – сумма стехиометрических коэффициентов при газовых компонентах в уравнении реакции взрыва; R=8,31 Дж/(моль·К) – универсальная газовая постоянная.

Для реакций, протекающих в изотермических условиях (при постоянстве температуры Т=const), тепловой эффект вычисляют в соответствии с законом Гесса

rH0298=[nкон(fH0298)кон-nисх(fH0298)исх]

где: fН0298 – стандартные энтальпии образования исходных и конечных веществ (индекс f означает формирование, а r - реакцию), т.е. энтальпии реакции образования 1 моль этих веществ из простых веществ, взятые в форме, устойчивой при нормальных условиях (Р0=101,3 кПа; Т0=298К). Размерность их следующая: кДж/моль или ккал/моль (в более поздней литературе). Эти величины приводятся в справочниках физико-химических величин (см. приложение); n – стехиометрические коэффициенты в реакции.

В настоящее время помимо термодинамической системы знаков существует термохимическая система знаков теплоты и работы. Согласно последней тепловой эффект Q противоположен по знаку изменению энтальпий реакции rH0298:

Q= -rH0298, кДж/моль или Q= -rH0298·n, кДж