Работа, проделанная Лифшицем и Халатниковым, имела ценность, потому что показала: Вселенная могла иметь сингулярность — Большой Взрыв, — если общая теория относительности верна. Однако они не разрешили жизненно важного вопроса: предсказывает ли общая теория относительности, что у нашей Вселенной должен был быть Большой Взрыв, начало времени? Ответ на это дал совершенно иной подход, предложенный впервые английским физиком Роджером Пенроузом в 1965 г. Пенроуз использовал поведение так называемых световых конусов в теории относительности и тот факт, что гравитация всегда вызывает притяжение, чтобы показать, что звезды, переживающие коллапс под воздействием собственного тяготения, заключены в пределах области, чьи границы сжимаются до нулевых размеров. Это означает, что все вещество звезды стягивается в одну точку нулевого объема, так что плотность материи и кривизна пространства-времени становятся бесконечными. Другими словами, налицо сингулярность, содержащаяся в области пространства-времени, известной как черная дыра.
На первый взгляд, выводы Пенроуза ничего не говорили о том, существовала ли в прошлом сингулярность Большого Взрыва Однако в то самое время, когда Пенроуз вывел свою теорему, я, тогда аспирант, отчаянно искал математическую задачу, которая позволила бы мне завершить диссертацию. Я понял, что, если обратить вспять направление времени в теореме Пенроуза, чтобы коллапс сменился расширением, условия теоремы останутся прежними, коль скоро нынешняя Вселенная приближенно соответствует фридмановской модели в больших масштабах. Из теоремы Пенроуза вытекало, что коллапс любой звезды заканчивается сингулярностью, а мой пример с обращением времени доказывал, что любая фридмановская расширяющаяся Вселенная должна возникать из сингулярности. По чисто техническим причинам теорема Пенроуза требовала, чтобы Вселенная была бесконечна в пространстве. Я мог использовать это для доказательства того, что сингулярности возникают лишь в одном случае: если высокая скорость расширения исключает обратное сжатие Вселенной, потому что только фридмановская модель бесконечна в пространстве.
Несколько следующих лет я разрабатывал новые математические приемы, которые позволили бы исключить это и другие технические условия из теорем, доказывающих, что сингулярности должны существовать. Результатом стала опубликованная в 1970 г. Пенроузом и мной совместная статья, утверждавшая, что сингулярность Большого Взрыва должна была существовать при условии, что общая теория относительности справедлива и количество вещества во Вселенной соответствует тому, которое мы наблюдаем.
Последовала масса возражений, частично от советских ученых, которые придерживались «партийной линии», провозглашенной Лифшицем и Халатниковым, а частично от тех, кто питал отвращение к самой идее сингулярности, оскорбляющей красоту теории Эйнштейна. Впрочем, с математической теоремой трудно поспорить. Поэтому ныне широко признано, что Вселенная должна была иметь начало.
Третья лекция. Черные дыры
Термин «черная дыра» возник сравнительно недавно. Американский ученый Джон Уилер ввел его в 1969 г. как наглядное отображение идеи, зародившейся самое меньшее два века назад. В то время существовало две теории света. Одна провозглашала, что свет — это поток частиц, другая — что это волны. Теперь мы знаем, что верны обе теории. Принцип корпускулярно-волнового дуализма, принятый в квантовой механике, разрешает рассматривать свет и как частицы, и как волны. Однако волновая концепция света не проясняет того, воздействует ли на свет гравитация. Если рассматривать свет как поток частиц, можно ожидать, что гравитация воздействует на него таким же образом, как на пушечные ядра, ракеты и небесные тела.
В 1783 г. кембриджский преподаватель Джон Мичелл написал статью для журнала «Философские труды Лондонского Королевского общества», в которой указывал: достаточно массивные и плотные звезды могут обладать настолько мощным гравитационным полем, что удерживают испускаемый ими свет. Любой свет, излучаемый поверхностью звезды, будет притянут назад гравитацией и не сможет удалиться на сколько-нибудь значительное расстояние. Мичелл предположил, что таких звезд во Вселенной немало. Хотя мы не можем их видеть (ведь их свет никогда не достигнет нас), мы способны регистрировать их гравитационное воздействие.