Brown toner, as the name implies, puts a deep brown tone on prints. Using the manufacturers’ recommendations, you can obtain rich brown tones; by diluting the solution far more than recommended, you can get softer, more silver-brown tones. It’s worth investigating the range of tones that this toner can impart into some of your prints.
Gold toners are made by several manufacturers. Each brand imparts a very different color and unique depth to the toned print, so it’s impossible to give any overall results. Some photographers use gold toner in combination with another toner (generally selenium), first toning a bit in one, then the other to get just the effect they want.
Chemical Coloration
Selenium toning followed by potassium ferricyanide bleaching turns light gray tones to soft rose-beige, while dark tones remain virtually unchanged in color. This effect may be rather pronounced with some papers but nearly imperceptible with others. The duotone coloration can be done with great subtlety and is quite beautiful with certain subjects. The procedure destabilizes the emulsion, so the print must again be fixed, rinsed, and then lightly selenium-toned once more prior to final washing to impart permanence to the image. As a sidelight, note that a color change almost always occurs if a toned print is then bleached, so don’t attempt to reduce a toned print with potassium ferricyanide unless you want the color change. Such “discoloration” can become a rich source of creativity and personal expression.
Painting portions of a print with more concentrated selenium and following that with potassium ferricyanide bleach can produce a remarkable range of warm tones that are permanent when the print is fully washed. I have delved into the use of selenium toner and potassium ferricyanide to produce a range of deep browns, purplish browns, rose tones, yellows, and other variations. Using just these two chemicals, creative possibilities are virtually endless.
Creating colors in black-and-white papers through toning can go beyond the use of selenium, sepia, brown, or gold toners. Copper toners, blue toners, and others can be used—or grotesquely abused—for a variety of effects. Using a combination of toners, such as sepia or thio-urea toner together with iron-blue toner, will impart blue overtones in the shadow areas but warm browns and beiges in the highlight areas.
Chemical coloration of black-and-white prints offers creative opportunities that should not be ignored. The book Elements of Landscape Photography by Eddie Ephraums details numerous toning combinations. Photographer’s Formulary in Condon, Montana has a remarkable catalog of photographic chemicals, including a wide range of toners.
On some of my photographs I partially bleach selected areas, then apply concentrated selenium toner to those areas prior to completion of the bleaching. I control the degree of chemical coloration depending on how much bleaching I do before and after applying the toner. If I do most of the bleaching prior to applying the toner, the color change is almost subliminal. But if I apply the toner early, the change can be quite profound. The bottom line is this: if you hear someone say, “Never bleach after toning”, you may want to try it just to see what happens. Any “forbidden” procedure may open up rich creative possibilities.
Note
Due to the poor quality of the tap water where I used to live, I added one step to this process. After squeegeeing each print, I swabbed it down with a sponge using distilled water and Photo-Flo, and then I squeegeed it off a final time. Without this final swabbing, the print dried with a bothersome film, giving it the degraded look of a print covered with a sheet of old plastic. I found that if I failed to do the final swabbing, the print could not be saved through rewetting and swabbing again. Apparently a precipitate from the water embedded itself in the emulsion and permanently degraded the image. If your prints exhibit uneven gloss or other strange surface characteristics, it may be due to subpar water in your area, and you may well consider this swabbing procedure to eliminate the problem.
Full Archival Processing of Prints
After toning, I rinse off the prints with a hose, and then place all of them into a holding tray of water. Once they are in the holding tray, I let them stay there for a minimum of five minutes with water gently running into the tray. I make three more fresh water tray changes to complete the washing, allowing the prints to soak in each tray at least 10 minutes before transferring them—one at a time—to the next. Finally, I squeegee the prints and dry them emulsion side down on large fiberglass window screens. This air-drying technique gives the prints a semigloss surface, which to me, offers the optimum in surface qualities between a glassy ferrotype surface and a dull matte surface.
I don’t use a print washer, nor do I feel it necessary to do so. The purpose of washing is to progressively dilute the harmful contaminants embedded in the emulsion or fiber base (residual acids, salts, etc.) to the point that they are rendered harmless to the longevity of the image. Several fresh water tray immersions accomplish the job nicely. I tested my results with Kodak’s Hypo-Eliminator Kit, and the tests showed a perfect wash. All good print washers do the same thing, but they cost more and often use more water to accomplish the same task.
However, if you are pressed for time, a good print washer is a time-saver. The only drawback to my method is the time spent moving prints one-by-one from tray to tray. (Note: Only two trays are needed. When all the prints are transferred from one tray to the next, I empty the first tray, rinse it thoroughly, and refill it to receive prints from the other tray after the appropriate length of time.)
Concerning archival permanence, I’m somewhat skeptical about the information presented to photographers for two reasons. First, tests that simulate the aging of a print may not be accurate. At best, they simulate (in a laboratory environment) what is currently believed to be a factual model of aging. They may not simulate actual aging conditions. Second, no matter how clean the final print is, it is still subject to the high acid content of the air in our modern world. If the acidic air is destroying stone monuments, it is surely doing damage to photographs, even ones protected with selenium. The only way to truly protect a print from damage is to hermetically seal it from any contact with the atmosphere. However, I do recognize that toning and complete washing surely give it greater longevity—if not permanence—than a print lacking that treatment.
Furthermore, the issue of archival permanence is overblown, and often of concern only to photographers. If we turn to painting, watercolors are highly impermanent. In 1981, after I completed photographing the English cathedrals, I was lucky enough to see the Turner watercolors displayed at the Tate Gallery in London. To my understanding, these magnificent paintings are exhibited only once every 10 years for approximately three weeks, and even then they are shown under dim lighting. The reason is that watercolors fade quickly under strong lighting. Nobody raises the issue of impermanence of these treasures, but photographers go on at great lengths about the correct methods of preserving photographs. I think it’s a bit silly. I do the best I can with the information available; I suggest you do the same. Concentrate on your personal expression and your art. Let time do what it will to your vision.
In the early 1990s, David Hockney had an exhibition that included collages in mixed media. Large portions of the work included color photographs, which lack true archival permanence. At the opening, someone reportedly asked him, “How can you charge $10,000 for a work that won’t last 20 years?” Hockney replied, “How much does a Porsche cost, and how long does it last?”