Выбрать главу

Then the scene changed. From a point somewhere in the vicinity of Long Island the flexible crust of the earth tilted downward under the burden of a vast glacier. The regions we know as eastern Maine and Nova Scotia were pressed down into the earth, some areas being carried as much as 1200 feet beneath the sea. All of the northern coastal plain was drowned. Some of its more elevated parts are now offshore shoals, the fishing banks off the New England and Canadian coasts—Georges, Browns, Quereau, the Grand Bank. None of it remains above the sea except here and there a high and isolated hill, like the present island of Monhegan, which in ancient times must have stood above the coastal plain as a bold monadnock.

Where the mountainous ridges and the valleys lay at an angle to the coast, the sea ran far up between the hills and occupied the valleys. This was the origin of the deeply indented and exceedingly irregular coast that is characteristic of much of Maine. The long narrow estuaries of the Kennebec, the Sheepscot, the Damariscotta and many other rivers run inland a score of miles. These salt-water rivers, now arms of the sea, are the drowned valleys in which grass and trees grew in a geologic yesterday. The rocky, forested ridges between them probably looked much as they do today. Offshore, chains of islands jut out obliquely into the sea, one beyond another—half-submerged ridges of the former land mass.

But where the shore line is parallel to the massive ridges of rock the coast line is smoother, with few indentations. The rains of earlier centuries cut only short valleys into the flanks of the granite hills, and so when the sea rose there were created only a few short, broad bays instead of long winding ones. Such a coast occurs typically in southern Nova Scotia, and also may be seen in the Cape Ann region of Massachusetts, where the belts of resistant rock curve eastward along the coast. On such a coast, islands, where they occur, lie parallel to the shore line instead of putting boldly out to sea.

As geologic events are reckoned, all this happened rather rapidly and suddenly, with no time for gradual adjustment of the landscape; also it happened quite recently, the present relation of land and sea being achieved perhaps no more than ten thousand years ago. In the chronology of Earth, a few thousand years are as nothing, and in so brief a time the waves have prevailed little against the hard rocks that the great ice sheet scraped clean of loose rock and ancient soil, and so have scarcely marked out the deep notches that in time they will cut in the cliffs.

For the most part, the ruggedness of this coast is the ruggedness of the hills themselves. There are none of the wave-cut stacks and arches that distinguish older coasts or coasts of softer rock. In a few, exceptional places the work of the waves may be seen. The south shore of Mount Desert Island is exposed to heavy pounding by surf; there the waves have cut out Anemone Cave and are working at Thunder Hole to batter through the roof of the small cave into which the surf roars at high tide.

In places the sea washes the foot of a steep cliff produced by the shearing effect of earth pressure along fault lines. Cliffs on Mount Desert—Schooner Head, Great Head, and Otter-tower a hundred feet or more above the sea. Such imposing structures might be taken for wave-cut cliffs if one did not know the geologic history of the region.

On the coasts of Cape Breton Island and New Brunswick the situation is very different and examples of advanced marine erosion occur on every hand. Here the sea is in contact with weak rock lowlands formed in the Carboniferous period. These shores have little resistance to the erosive power of the waves, and the soft sandstone and conglomerate rocks are being cut back at an annual rate averaging five or six inches, or in some places several feet. Marine stacks, caves, chimneys, and archways are common features of these shores.

Here and there on the predominantly rocky coast of northern New England there are small beaches of sand, pebbles, or cobblestones. These have a varied origin. Some came from glacial debris that covered the rocky surface when the land tilted and the sea came in. Boulders and pebbles often are carried in from deeper water offshore by seaweeds that have gripped them firmly with their “holdfasts.” Storm waves then dislodge weed and stone and cast them on the shore. Even without the aid of weeds, waves carry in a considerable volume of sand, gravel, shell fragments, and even boulders. These occasional sandy or pebbly beaches are almost always in protected, incurving shores or dead-end coves, where the waves can deposit debris but from which they cannot easily remove it.

When, on those coastal rocks between the serrate line of spruces and the surf, the morning mists conceal the lighthouses and fishing boats and all other reminders of man, they also blur the sense of time and one might easily imagine that the sea came in only yesterday to create this particular line of coast. Yet the creatures that inhabit the intertidal rocks have had time to establish themselves here, replacing the fauna of the beaches of sand and mud that probably bordered the older coast. Out of the same sea that rose over the northern coast of New England, drowning the coastal plain and coming to rest against the hard uplands, the larvae of the rock dwellers came—the blindly searching larvae that drift in the ocean currents ready to colonize whatever suitable land may lie in their path or to die, if no such landfall is their lot.

Although no one recorded the first colonist or traced the succession of living forms, we may make a fairly confident guess as to the pioneers of the occupation of these rocks, and the forms that followed them. The invading sea must have brought the larvae and young of many kinds of shore animals, but only those able to find food could survive on the new shore. And in the beginning the only available food was the plankton that came in renewed clouds with every tide that washed the coastal rocks. The first permanent inhabitants must have been such plankton-strainers as the barnacles and mussels, who require little but a firm place to which they may attach themselves. Around and among the white cones of the barnacles and the dark shells of the mussels it is probable that the spores of algae settled, so that a living green film began to spread over the upper rocks. Then the grazers could come—the little herds of snails that laboriously scrape the rocks with their sharp tongues, licking off the nearly invisible covering of tiny plant cells. Only after the establishment of the plankton-strainers and the grazers could the carnivores settle and survive. The predatory dog whelks, the starfish, and many of the crabs and worms must, then, have been comparative latecomers to this rocky shore. But all of them are there now, living out their lives in the horizontal zones created by the tides, or in the little pockets or communities of life established by the need to take shelter from surf, or to find food, or to hide from enemies.

The pattern of life spread before me when I emerge from that forest path is one characteristic of exposed shores. From the edge of the spruce forests down to the dark groves of the kelps, the life of the land grades into the life of the sea, perhaps with less abruptness than one would expect, for by various little interlacing ties the ancient unity of the two is made clear.

Lichens live in the forest above the sea, in the silent intensity of their toil crumbling away the rocks as lichens have done for millions of years. Some leave the forest and advance over the bare rock toward the tide line; a few go even farther, enduring a periodic submersion by the sea so that they may work their strange magic on the rocks of the intertidal zone. In the dampness of foggy mornings the rock tripe on the seaward slopes is like sheets of thin, pliable green leather, but by midday under a drying sun it has become blackened and brittle; then the rocks look as though they were sloughing off a thin outer layer. Thriving in the salt spray, the wall lichen spreads its orange stain on the cliffs and even on the landward side of boulders that are visited by the highest tides of each moon. Scales of other lichens, sage-green, rolled and twisted into strange shapes, rise from the lower rocks; from their under surfaces black, hairy processes work down among the minute particles of rock substance, giving off an acid secretion to dissolve the rock. As the hairs absorb moisture and swell, fine grains of the rock are dislodged and so the work of creating soil from the rock is advanced.