Выбрать главу

Clams, crabs, and worms are part of a community of animals whose lives are closely interrelated. The crabs and the worms are the active predators, the beasts of prey. The clams, the mussels, and the barnacles are the plankton feeders, able to live sedentary lives because their food is brought to them by each tide. By an immutable law of nature, the plankton feeders as a group are more numerous than those that prey on them. Besides the clams and other large species, the rockweeds shelter thousands of small beings, all of them busy with filtering devices of varying design, straining out the plankton of each tide. There is, for example, a small, plumed worm called Spirorbis. Seeing it for the first time, one would certainly say that it is no worm, but a snail, for it is a tube-builder, having learned some feat of chemistry that allows it to secrete about itself a calcareous shell or tube. The tube is not much larger than the head of a pin and is wound in a flat, closely coiled spiral of chalky whiteness, its form strongly suggesting some of the land snails. The worm lives permanently within the tube, which is cemented to weed or rock, thrusting out its head from time to time to filter food animals through the fine filaments of its crown of tentacles. These exquisitely delicate and filmy tentacles serve not only as snares to entangle food but as gills for breathing. Among them is a structure like a long-stemmed goblet; when the worm draws back into its tube the goblet or operculum closes the opening like a neatly fitted trap door.

The fact that the tube worms have managed to live in the intertidal zone for perhaps millions of years is evidence of a sensitive adjustment of their way of life, on the one hand to conditions within the surrounding world of the rockweeds, on the other to vast tidal rhythms linked with the movements of earth, moon, and sun.

In the inmost coils of the tube are little chains of beads wrapped in cellophane—or so they appear. There are about twenty beads in a chain. The beads are developing eggs. When the embryos have developed into larvae, the cellophane membranes rupture and the young are sent forth into the sea. By keeping the embryonic stages within the parental tube Spirorbis protects its young from enemies and assures that the infant worms will be in the intertidal zone when they are ready to settle. Their period of active swimming is short—at most an hour or so, and well contained within a single rising or falling of the tide. They are stout little creatures with bright red eye spots; perhaps the larval eyes help in locating a place for attachment but in any event they degenerate soon after the larva settles.

In the laboratory, under my microscope, I have watched the larvae swimming about busily, all their little bristles whirring, then sometimes descending to the glass floor of their dish to bump it with their heads. Why and how do the infant tube worms settle in the same sort of place their ancestors chose? Apparently they make many trials, reacting more favorably to smooth surfaces than to rough, and displaying a strong instinct of gregariousness that leads them to settle by preference where others of their kind are already established. These tendencies help to keep the tube worms within their comparatively restricted world. There is also a response, not to familiar surroundings, but to cosmic forces. Every fortnight, on the moon’s quarter, a batch of eggs is fertilized and taken into the brood chamber to begin its development. And at the same time the larvae that have been made ready during the previous fortnight are expelled into the sea. By this timing—this precise synchronizing with the phases of the moon—the release of the young always occurs on a neap tide, when neither the rise nor the fall of the water is of great extent, and even for so small a creature the chances of remaining within the rockweed zone are good.

Sea snails of the periwinkle tribe inhabit the upper branches of the weeds at high tide or take shelter under them when the tide is out. The orange and yellow and olive-green colors of their smoothly rounded, flat-topped shells suggest the fruiting bodies of the rockweeds, and perhaps the resemblance is protective. The smooth periwinkle, unlike the rough, is still an animal of the sea; the salty dampness it requires is provided by the wet and dripping fronds of the seaweeds when the tide is out. It lives by scraping off the cortical cells of the algae, seldom if ever descending to the rocks to feed on the surface film as related species do. Even in its spawning habits the smooth periwinkle is a creature of the rockweeds. There is no shedding of eggs into the sea, no period of juvenile drifting in the currents. All the stages of its life are lived in the rockweeds—it knows no other home.

Curious about the early stages of this abundant snail, I have gone down into my own rockweed forests on the summer low tides to search for them. Sorting over the prostrate wrack, examining its long strands for some signs of what I sought, I have occasionally been rewarded by discovering transparent masses of a substance like tough jelly, tightly adhering to the fronds. They averaged perhaps a quarter-inch long and half as wide. Within each mass 1 could see the eggs, round as bubbles, dozens of them embedded in the confining matrix. One such egg mass that I carried to the microscope contained a developing embryo within the membranes of each egg. They were clearly molluscan, but so undifferentiated that I could not have said what mollusk lay nascent within. In the cold waters of its home, about a month would intervene from the egg to the hatching stage, but in the warmer temperatures of the laboratory the remaining days of development were reduced to hours. The following day each sphere contained a tiny baby periwinkle, its shell completely formed, apparently ready to emerge and take up its life on the rocks. How do they hold their places there, I wondered, as the weeds sway in the tides and occasional storms send waves pounding in over the shore? Later in the summer there was at least a partial answer. I noticed that many of the air vesicles of the wracks bore little perforations, as though they had been chewed or punctured by some animal. I slit some of these vesicles carefully so that I might look inside. There, secure in a green-walled chamber, were the babies of the smooth periwinkle—from two to half a dozen of them sharing the refuge of a single vesicle, secure alike against storms and enemies.

Down near the low water of the neap tides the hydroid Clava spreads its velvet patches on the fronds of the knotted wrack and the bladder wrack. Rising from its point of attachment like a plant from its root clump, each cluster of tubular animals looks like nothing so much as a spray of delicate flowers, shading from pink to rose and fringed with petal-like tentacles, all nodding in the water currents as woodland flowers nod in a gentle wind. But the swaying movements are purposive ones by which the hydroid reaches into the currents for food. In its way it is a voracious little jungle beast, all its tentacles studded with batteries of stinging cells that can be shot into its victims like poisoned arrows. When, in their ceaseless movements, the tentacles come into contact with a small crustacean or worm or the larva of some sea creature, a shower of darts is released; the prey animal becomes paralyzed and is seized and conveyed to the mouth by the tentacles.

Each of these colonies now established on the wracks came from a little swimming larva that once settled there, shed the hairy cilia by which it swam, attached itself, and began to elongate into a little plantlike being. A crown of tentacles formed at its free end. In time, from the base of the tubular creature, a seeming root, or stolon, began to creep over the rockweed, budding off new tubes, each complete with mouth and tentacles. So all the numerous individuals of the colony originated in a single fertilized ovum that yielded the wandering larva.