He therefore started to consider what form the laws of nature would take in a rotating system. This immediately led him to a startling conclusion: the ordinary laws of Euclidean geometry could not hold in such a system! His argument was based on the contraction of measuring rods in motion which he had proved in special relativity. First, imagine observers at rest on a surface who measure the circumference and diameter of a circle painted on it. They will find that their ratio is π. That agrees with Euclidean geometry – a recognized law of nature. Now imagine other observers on a disk above the painted circle and rotating about its centre. Their rods will undergo Fitzgerald-Lorentz contraction when laid out in the direction of motion, around the circumference. However, when laid out along the diameter, the rods will not contract. (The contraction occurs only in the direction of motion.) Therefore, the rotating observers will not find π when they measure the ratio of the circumference to the diameter. For them, Euclidean geometry will not hold.
Because Einstein wanted so passionately to generalize the relativity principle, he took this result seriously. According to the hint from the equivalence principle, novel effects in accelerated coordinate systems (as a rotating one is) could be attributed to gravitational effects. He concluded that geometry would not be Euclidean in a gravitational field. This happened during 1911/12, when he was working in Prague. Through either the suggestion of a colleague or the recollection of lectures on non-Euclidean geometry he had heard as a student, Einstein’s attention was drawn to a classic study in the 1820s by the German mathematician Carl Friedrich Gauss.
Gauss had studied the curvature of surfaces in Euclidean space. As a rule, material surfaces in space are not flat but curved. Think of the surface of the Earth or any human body. Gauss’s most important insight was that a surface in three-dimensional space is characterized by two distinct yet not entirely independent kinds of curvature. He called them intrinsic and extrinsic curvature. The intrinsic curvature depends solely on the distance relationships that hold within the surface, whereas the extrinsic curvature measures the bending of the surface in space. A surface can be flat in itself – with no intrinsic curvature – but still be bent in space and therefore have extrinsic curvature. The best illustration of this is provided by a flat piece of paper, which has no intrinsic curvature. As it lies on a desk it has no extrinsic curvature either: it is not bent in space. However, it can be rolled into a tube. It is then bent – but not stretched – and acquires extrinsic curvature.
In contrast to a sheet of paper, the surface of a sphere, like the earth, has genuine intrinsic curvature. Gauss realized that important information about it could be deduced from distance measurements made entirely within the surface. Imagine that you can pace distances very accurately, and that you walk due south from the north pole until you reach latitude 85° north. Then you turn left and walk due east all the way round the Earth at that latitude. All the time you will have remained the same distance R from the north pole. If you believed the Earth to be flat, you would expect to have to walk the distance 2πR before returning to the point of your left turn. However, you will find that you get there having walked a somewhat shorter distance. This shows you that the surface of the Earth is curved.
To describe these things mathematically for all smooth surfaces, Gauss found it convenient to imagine ‘painting’ curved coordinate lines on the surface. On a flat surface it is possible to introduce rectangular coordinate grids, but not if the surface is curved in an arbitrary way. So Gauss did the next best thing, which is to allow the coordinate lines to be curved, like the lines of latitude and longitude on the surface of the Earth. He showed how the distance between any two neighbouring points on a curved surface could be expressed by means of the distances along coordinate lines, and also how exactly the same distance relations could be expressed by means of a different system of coordinates on the same surface. About thirty years later, another great German mathematician, Bernhard Riemann, showed that not only two-dimensional surfaces but also three-dimensional and even higher-dimensional spaces can have intrinsic curvature. This is hard to visualize, but mathematically it is perfectly possible. Just as on the Earth, in a curved space of higher dimensions, you can, travelling always in the same direction, come back to the point you started from. These more general spaces with curvature are now called Riemannian spaces.
Einstein realized that he had to learn about all this work thoroughly, and it was very fortunate that he moved at that time to Zurich, where Marcel Grossmann, an old friend from student days, was working. Grossmann gave him a crash course in all the mathematics he needed. When he had fully familiarized himself with it, Einstein became extremely excited for two reasons.
First, Minkowski had shown that space-time could be regarded as a four-dimensional space with a ‘distance’ defined in it between any two points. Except that the ‘distance’ was sometimes positive and sometimes negative, whereas Riemann had assumed the distance to be always positive and had never envisaged time as a dimension, considered mathematically Minkowski’s space-time was just like one of Riemann’s spaces. But it was special in lacking curvature – it was like a sheet of paper rather than the Earth’s surface. Einstein had meanwhile become convinced that gravity curves space-time. This led to one of his most beautiful ideas: in special relativity, the world line (path) of a body moving inertially is a straight line in space-time. This is a special example of a ‘shortest curve’, or geodesic. The corresponding path in a space with curvature would be a geodesic, like a great circle on a sphere.
Einstein assumed that the world line of a body subject to inertia and gravity would be a geodesic. In this way he could achieve his dream of showing that inertia and gravity were simply different manifestations of the same thing – an innate tendency to follow a shortest path. This will be a straight line if no gravity is present, so that space-time has no curvature, but in general it will be a curved (but ‘straightest’) line in a genuinely curved space-time. Since matter causes gravity, Einstein assumed that matter must curve space-time in accordance with some law, for which he immediately started to look. Bodies moving in such a space-time would follow the geodesics corresponding to the curvature produced by the matter, so the gravitational effect of the matter would be expressed through the curvature it produces. Another important insight was that in small regions the effect of curvature would be barely noticeable, just as the Earth seems flat in a small region, so that in those small regions physical phenomena would appear to unfold just as in special relativity without gravity. This gave full expression to the equivalence principle.
The second reason why Einstein became so excited was that Gauss’s method matched his own idea of general relativity. He disliked the distinguished frames of special relativity because they corresponded to special ways of ‘painting’ coordinate systems onto space-time. He felt that this was the same as having absolute space and time. They would be eliminated only if the coordinate systems could be painted on space-time in an arbitrary way. But this was what Gauss’s method amounted to. In fact, in a curved space it is mathematically impossible to introduce rectangular coordinates. Mathematicians call the possibility of using completely arbitrary coordinate systems general covariance. Specifically, laws are said to be generally covariant if they take exactly the same form in all coordinate systems. Einstein identified this with his requirement of general relativity.