We had a cat called Lucy, who was a phenomenal hunter. She could catch swifts in flight, leaping two metres into the air. She was seen in the act twice, and must have caught other victims since several times we found just the outermost wing feathers of swifts by the back door. Faced with facts like this, isn’t it ridiculous to claim there is no motion?
The argument seems decisive because we instinctively feel that Lucy has (or, rather had, since sadly she was killed by a car) some unchanging identity. But is the cat that leaps the cat that lands? Except for the changes in her body shape, we do not notice any difference. However, if we could look closely we might begin to have doubts. The number of atoms in even the tiniest thing we can see is huge, and they are in a constant state of flux. Because large numbers play a vital role in my arguments, I shall give two illustrations. Have you ever tried to form a picture of the number of atoms in a pea?
Figure 5. Triangle Land is like an inverted pyramid, with frontiers formed by special triangles as explained in Figure 4. Platonias corresponding to configurations of more than three particles have not only frontiers but also analogous internal topographic features. This illustration, based on the parachute of a salsify seed (shown life-size on left) from my wife’s garden, is an attempt to give some idea of the rich structure of the frontiers of Platonia. No attempt is made to represent the even richer internal structure. Platonia’s Alpha is where the ribs converge. Because Platonia has no Omega, the salsify ribs should extend out from Alpha for ever. (The wind carries the actual seeds rather efficiently into our neighbours’ gardens, where the progeny flourish, but they are not always welcome, although salsify is an excellent vegetable.)
Imagine a row of dots a millimetre apart and a metre long. That will be one thousand dots (103). (Actually, it will be 1001, but let us forget the last 1.) One thousand such rows next to one another, also a millimetre apart, gives a square metre of dots, one million (106) in total. The number of dots in one or two squares like that is about the number of pounds or dollars ordinary mortals like me can hope to earn in a lifetime. Now stack one thousand such squares into a cube a metre high. That is already a billion (109). So it is surprisingly easy to visualize a billion. Five such cubes are about the world’s human population. Yet we are nowhere remotely near the number of atoms in a pea.
We shall keep trying. We make another cube of these cubes. One thousand of them stretched out a kilometre long takes us up to a trillion (1012). A square kilometre of them will be 1015 (about the number of cells in the human body), and if we pile them a kilometre high we get to 1018. We still have a long way to go. Make another row of one thousand of these kilometre cubes, and we get to 1021. Finally, make that into a square, one thousand kilometres by one thousand kilometres and a kilometre high – it would comfortably cover the entire British Isles to that height. At last we are there: the number of dots we now have (1024) is around the number of atoms in a pea. To get the number in a child’s body, we should have to go up to a cube a thousand kilometres high. It hardly bears thinking about.
Equally remarkable is the order and organized activity in our bodies. Consider this extract from Richard Dawkins’s The Selfish Gene:
The haemoglobin of our blood is a typical protein molecule. It is built up from chains of smaller molecules, amino acids, each containing a few dozen atoms arranged in a precise pattern. In the haemoglobin molecule there are 574 amino acid molecules. These are arranged in four chains, which twist around each other to form a globular three-dimensional structure of bewildering complexity. A model of a haemoglobin molecule looks rather like a dense thornbush. But unlike a real thornbush it is not a haphazard approximate pattern but a definite invariant structure, identically repeated, with not a twig nor a twist out of place, over six thousand million million million times in an average human body. The precise thornbush shape of a protein molecule such as haemoglobin is stable in the sense that two chains consisting of the same sequences of amino acids will tend, like two springs, to come to rest in exactly the same three-dimensional coiled pattern. Haemoglobin thornbushes are springing into their ‘preferred’ shape in your body at a rate of about four hundred million million per second and others are being destroyed at the same rate.
If, as I think they must be, things are properly considered in Platonia, Lucy never did leap to catch the swifts. The fact is, there never was one cat Lucy – there were (or rather are, since Lucy is in Platonia for eternity, as we all are) billions upon billions upon billions of Lucys. This is already true for the Lucys in one leap and descent. Microscopically, her 1026 atoms were rearranged to such an extent that only the stability of her gross features enables us to call her one cat. What is more, compared with her haemoglobin molecules the features by which we identified her – the sharp eyes, the sleek coat, the wicked claws – were gross. Because we do not and cannot look closely at these Lucys, we think they are one. And all these Lucys are themselves embedded in the vast individual Nows of the universe. Uncountable Nows in Platonia contain something we should call Lucy, all in perfect Platonic stillness. It is because we abstract and ‘detach’ one Lucy from her Nows that we think a cat leapt. Cats don’t leap in Platonia. They just are.
You might argue that even if cats do not have a permanent identity, their atoms do. But this presupposes that atoms are like billiard balls with distinguishing marks and permanent identities. They aren’t. Two atoms of the same kind are indistinguishable. One cannot ‘put labels on them’ and recognize them individually later. Moreover, at the deeper, subatomic level the atoms themselves are in a perpetual state of flux. We think things persist in time because structures persist, and we mistake the structure for substance. But looking for enduring substance is like looking for time. It slips through your fingers. One cannot step into the same river twice.
Zeno of Elea, who belonged to the same philosophical school as Parmenides, formulated a famous paradox designed to show that motion is impossible. After an arrow shot at a target has got halfway there, it still has half the distance to go. When it has gone half that distance, it still has half of that way to go. This goes on for ever. The arrow can never reach the target, so motion is impossible. In normal physics, with a notion of time, Zeno’s paradox is readily resolved. However, in my timeless view the paradox is resurrected, but the arrow never reaches the target for a more basic reason: the arrow in the bow is not the arrow in the target.
There are two parts to my claim that time does not exist. I start from the philosophical conviction that the only true things are complete possible configurations of the universe, unchanging Nows. Unchanging things do not travel in time from Now to Now. Material things, we included, are simply parts of Nows. This philosophical standpoint must be matched by a physical theory that seems natural within it. The evidence that such a physical theory exists and seems to describe the universe forms the other part of my claim. This section has merely made the philosophy, the notion of being, clear. The physics, the guts of the story, is still to come.