Выбрать главу

Both electrons and photons can, depending on the circumstances, exhibit wave or particle behaviour. Otherwise they behave very differently. Many photons can be present simultaneously in the same state (a state being a characteristic set of properties of particles, such as position and direction of motion), but for electrons this is impossible – there can be at most one in any given state. The two kinds of particle have different statistical behaviour, so-called Fermi-Dirac statistics for electrons and Bose-Einstein statistics for photons. In fact, there are now known to be many different particles, each with an associated field. They satisfy either Fermi-Dirac statistics, and are thus called fermions, or Bose-Einstein statistics, in which case they are called bosons. In addition, nearly all particles have an antiparticle. An antiparticle is identical to the original particle in some respects, but opposite to it in others; in particular, a particle and its antiparticle always have opposite charges.

In many ways, the story of fundamental physics during the last seventy years has been the discovery of particles and the understanding of the manner in which they interact. All particles that have so far been discovered – there is a whole ‘zoo’ of them – are either spinor or vector particles. Ironically, particles corresponding to the simplest scalar fields have not yet been discovered, though it is confidently believed that they will be soon, mainly on the grounds of indirect but rather persuasive theoretical arguments. Currently, an immense amount of work is being done in the attempt to unify the two broad categories of particles – fermions and bosons – by means of an idea called supersymmetry. In the last two or three years, there has been another great surge of excitement in the field of superstring theory. This combines the idea of supersymmetry with the idea that the complete ‘zoo’ of particles known at present are simply different manifestations of the vibrations of a string, much as a violin string can vibrate at its different harmonics. This is the dream of the theory of everything (TOE). Some readers may be familiar with these ideas, originally embodied in the acronym GUT – grand unified theory. This was the aim of physicists who wished to describe within a single, unified theoretical framework all the forces of nature except gravity (long recognized as especially difficult to include). More recent, and more ambitious since it aims to include gravity, is the quest for the big TOE.

I am not going to make any attempt to discuss this work, nor will I try to explain the connection between a particle and its associated field. If a theory of everything is found, it may well change the framework of physics. We may find ourselves in a quite new arena and have to change our ideas about space and time yet again. However, as of now I believe we can glimpse the outlines of an arena large enough to accommodate not only the present ‘zoo’ but also whatever entities some putative theory of everything will come up with. The arena I have in mind is vast and timeless. I see it not as a rival to the theory of everything, but as a general framework in which such a theory can be formulated.

Now it is time to talk about the ideas that Schrödinger introduced in the winter of 1925/6. That was when the door was opened onto the vast arena.

NOTES

(p. 191) On the connection between particles and fields, let me mention here that I assume the appropriate ‘Platonic’ representation at the level of quantum field theory to be in terms of the states of fields, not particles.

CHAPTER 13

The Lesser Mysteries

INTRODUCTION

Most accounts of quantum mechanics concentrate on the simplest situations – the behaviour of a single particle. That is already very surprising. But the really mysterious properties come to light only in composite systems of several particles, whose behaviour can become bafflingly correlated. The situation is currently very exciting because experimentalists are now able to study two widely separated but strongly correlated particles. Their observations confirm quantum mechanics brilliantly but stretch human intuition to the limit. How can such things happen in space and time? And what unbelievable scenarios will a quantum universe present?

I suspect that the present astonishment exists because most quantum theoreticians do not think enough about quantum cosmology. The first issue is its arena. Quantum mechanics is currently presented in a hybrid framework of two arenas at once. One is an abstract mathematical construct known as Hilbert space, but its elements are essentially defined by absolute space and time, which comprise the second arena. Quantum mechanics takes both for granted. But they provide only a dubious foundation for quantum cosmology. Clarity cannot be achieved until this hybrid state is ended: the space-time framework must go. The answer to the question of how such things can happen in space and time is that they do not. They neither happen nor are they to be found in space and time. But these things are, and their being is in Platonia, which must replace the Hilbert space erected on the shaky foundations of absolute space and time. That, at least, is my view.

My account of wave mechanics will aim to show that the demise of space and time is inevitable. We shall first see how a single particle is described in space and time, and then see what happens when we try to describe the universe. Space and time ‘evaporate’, and we are left with the one true arena – timeless Platonia. In this arena, quantum mechanics seems to me to take on a totally transparent form. Whether we can believe in it is another matter.

THE WAVE FUNCTION

Every account of quantum mechanics includes the famous two-slit experiment, and mine is no exception (Box 11). Differences come later. The two-slit experiment is to quantum mechanics what the Michelson-Morley experiment is to relativity. The facts are simple, and show that a radical change is unavoidable. The great beauty is that the bare experimental facts directly suggest the need for and the basic form of wave mechanics.