Выбрать главу

I'd already grasped the principles: that space — the air that we breathed, the atoms in our bodies, the far reaches of the cosmos, everything — was filled with a churning "foam" of energy. Its presence was signified by the background static hiss of the universe — something you could hear on a transistor radio — but as far as visual detection went, was invisible. Which was what made it so controversial.

In 1948, Marckus told me, a Dutch physicist, Hendrik Casimir, came up with a theoretical model for proving that the "quantum vacuum" existed. If two aluminum plates were placed very close together, so close that their separation was less than the wavelengths of the fleeting particles in the quantum foam, it followed, Casimir reasoned, that there would be nothing between the plates.

Because the theory said that everything outside the plates would still be seething with zero-point fluctations, the external force pushing in on the plates ought to be enough to close them together, thereby proving the existence of the ZPE field.

The difficulty, however, related to the experiment. To exclude the wavelengths of the fluctuating particles, Casimir's plates had to be exactly parallel and separated by less than one micron — one hundredth the width of a human hair. It wasn't until 1997 that science was able to come up with equipment that could satisfy the tolerances required for the Casimir experiment. When it did, it found that the Casimir Effect existed exactly as predicted.

And with it flowed the corollary that the quantum vacuum, zero-point energy — call it what you will — existed as well.

In principle, there was no reason why mechanisms couldn't be built to tap into this energy.

And since the fleeting particles were popping in and out of existence billions of times every second, on every conceivable frequency, in every possible direction, there was, theoretically speaking, no limit to the amount of energy resulting from the fluctuations. In principle. Theoretically speaking.

"The argument now is not about whether the ZPE field exists," Marckus concluded, "but about how much energy it contains. It comes down to a difference in people's calculations and interpretations. Some say that there's enough energy in a shoe box to blow the world apart; others say that all the ZPE in the volume of the Earth couldn't boil you an egg with it." He paused. "I think you'll find with Puthoff that it's closer to the shoe-box scenario." And then he signed off.

I locked the car, walked over to the IAS office, pushed the glass and watched as it swung open. There was no one in the front office, so I called out a couple of times and, not getting any answer, moved toward the back of the building. I followed a corridor till I heard a man's voice. Poking my head around a door, I saw Puthoff sitting on the edge of his desk, a phone jammed to his ear. He was shorter than he'd appeared in photographs, but his puckish features and thick head of hair belied his 60-odd years. He waved me in, pointed with a mock grimace to the voice on the other end of the receiver, and gestured for me to grab a seat. A couple of minutes later, he hung up, muttered something about a canceled meeting in Washington, and asked if I'd like a coffee.

While we were standing by the coffee machine, I asked him which of Marckus' analogies he inclined toward.

"If we're right," he said, as I stirred creamer into my coffee, "and you have all possible directions of propagation in the universe, and all possible frequencies and wavelengths, and every one of them has this little contribution of zero-point energy, when you add it all up, the numbers are ridiculous." "How ridiculous?" I asked. He paused and added matter-of-factly: "There's enough energy in the volume of your coffee cup to evaporate all the world's oceans many times over."

He showed me a large workshop at the back of the building filled with workbenches, electrodes and measuring equipment. This, Puthoff said, was where he and his small team worked on the ZPE devices that people routinely sent him for analysis; tiny little reactors that supposedly drew energy out of the vacuum of space: the space that we occupied and the space, in its quantum sense, that occupied us.

The machines came in all shapes and sizes. Some were solid-state devices with no moving parts that used the pinching motion of the Casimir effect to create clusters of electrical charge with energy outputs many times greater than the kick they required to get going.

Others used the millions of imperceptible yet infinite movements of the quantum foam to stimulate a vibrating motion in magnetic fields. These vibrating fields, their proponents claimed, served as "gates" via which unending supplies of vacuum energy could be fed through electronic circuits and put to use.

If they could be proven to work repeatedly and reliably, Puthoff said, imagine it: no more pulling power off the national grid. You'd have a reactor in a box in your backyard; a little thing the size of a microwave oven that sucked energy from the space that it occupied and belted out clean, unending power wherever it was needed. Initial machines would feed power to your house, but later, as they developed in sophistication, just as computers had developed exponentially at the end of the 20th century, these devices would shrink in size and double in output; and they'd keep on shrinking and doubling, over and over, until they'd be small and powerful enough to put in cars or aircraft or submarines. Applications would be limited only by the imagination of the user. "If," I said. "You said, 'if.' " "Ah, well, that's the point," he replied. "Of the 30-odd devices that have come through this door, none has passed the magic test yet: a demonstrable measurement of more energy flowing out than is flowing in."

But it would happen. Maybe tomorrow, maybe in 30 years. But for sure, one day someone was going to announce that they'd invented a machine that could extract energy from the immeasurable pulse of the universe. It'd rate a paragraph in the news-briefs columns, but clip it or keep the paper, mark it well, Puthoff said, because on that day the world would change. Nothing would ever be the same again.

As he talked, Puthoff filled in the gaps in the résumé that I'd pulled off the Net. Soon after gaining his master's degree at the University of Florida, he went on active duty as a Naval Intelligence officer seconded to the National Security Agency. When he left the Navy, he converted to civilian status at the NSA, then went on sabbatical at Stanford University in California to get his Ph.D. He gained his Ph.D. in 1967, resigned from the NSA and soon afterward joined the Stanford Research Institute, a spin-off from the university, set up, among other things, to pursue heavily classified research for the U.S. defense and intelligence communities. Puthoff's thing was lasers, but it was at SRI that he developed the notion of the remote-viewing program for the CIA and the DIA. The RV work formed the hub of the "heavily classified research" that he undertook at SRI for the next 13 years. I asked how he'd made the jump from lasers to remote viewing. "It sounds weird, but it was a very straightforward thing," he said. In the early 1970s, physicists were searching everywhere for evidence of tachyons — particles that theoretically had the ability to travel faster than light. Finding them was problematic, because, if the theory was right, they couldn't travel below light-speed, making identification somewhat challenging.

Someone had given Puthoff a book called Psychic Discoveries Behind the Iron Curtain, which mentioned how Soviet scientists were looking for evidence of ESP in plant life. The Russians had connected up a pair of plants to polygraphs, separated them over huge distances and shielded them from all electromagnetic frequencies. They found that when one plant was burned with a cigarette, or even if someone was thinking about it, the other plant responded on the polygraph.