It seems to me that this perspective has contributed to the evolution not only of human art, already discussed in Chapter Nine, but also of human chemical abuse as discussed in this chapter. Both art and chemical abuse are widespread human hallmarks characteristic of most known human societies. Both beg explanation, since it is not immediately obvious why they promote our survival through natural selection, or why they help us acquire mates through sexual selection. I argued in Chapter Nine that art often serves as a valid indicator of an individual's superiority or status, since art requires skill to create and requires status or wealth to acquire. But those individuals perceived by their fellows as enjoying status thereby acquire enhanced access to resources and mates. I have argued in this chapter that humans seek status through many other costly displays besides art, and that some of those displays (like jumping from towers, fast driving, and chemical abuse) are surprisingly dangerous. The former costly displays advertise status or wealth; the latter, dangerous ones advertise that the displaying individual can master even such risks and hence must be superior. I do not claim, though, that this perspective affords a total understanding of art or chemical abuse. As I mentioned in Chapter Nine in connection with art, complex patterns of behaviour acquire a life of their own, go far beyond their original purpose (if there ever was just a single purpose), and may even originally have served multiple functions. Just as art is now motivated far more by pleasure than by need for advertisement, chemical abuse too is now clearly much more than an advertisement. It is also a way to get past inhibitions, drown sorrows, or just enjoy a good-tasting drink.
I also do not deny that, even from an evolutionary perspective, there remains a basic difference between human abuse of chemicals and its animal precedents. Stotting, long tails, and all the animal precedents that I described involve costs, but those forms of behaviour persist because the costs are outweighed by the benefits. A stotting gazelle loses a possible head start in a chase, but gains by decreasing the likelihood that a lion will embark on a serious chase at all. A long-tailed male bird is encumbered in finding food or escaping predators, but those survival disadvantages imposed by natural selection are more than compensated by mating advantages gained through sexual selection. The net balance is more rather than fewer offspring to pass on the male's genes. These animal traits only appear to be self-destructive; they are actually self-promoting. In the case of our chemical abuse, though, the costs outweigh the benefits. Drug addicts and drunkards not only lead shorter lives, but they lose rather than gain attractiveness in the eyes of potential mates and lose the ability to care for children. These traits do not persist because of hidden advantages outweighing costs; they persist mainly because they are chemically addicting. Thus, on balance, they are self-destructive, not self-promoting, patterns of behaviour. While gazelles may occasionally miscalculate in stotting, they do not commit suicide through addiction to the excitement of stotting. In that respect, our self-destructive abuse of chemicals diverged from its animal precursors to become truly a human hallmark.
TWELVE
ALONE IN A CROWDED UNIVERSE
While humans are unique among Earth's species, the enormous number of stars suggests that intelligent creatures like us must have evolved elsewhere in the universe. If so, why have we not been visited by their flying saucers? The insights that woodpeckers provide into the supposed inevitability of convergent evolution help us reassess the possibility that we are unique in the accessible universe as well as on Earth.
The next time you are outdoors on a clear night away from city lights, look up at the sky and get a sense of the myriads of stars. Next, find a pair of binoculars, train them on the Milky Way, and appreciate how many more stars escaped your naked eye. Then look at a photo of the Andromeda Nebula as seen through a powerful telescope to realize how enormous is the number of stars that escaped your binoculars as well.
Once all those numbers have sunk in, you will finally be ready to ask how humans could possibly be unique in the universe. How many civilizations of intelligent beings like ourselves must be out there, looking back at us? How long before we are in communication with them, before we visit them, or before we are visited?
On Earth, we certainly are unique. No other species possesses language, art, or agriculture of a complexity remotely approaching ours. No other species abuses drugs. But we have seen in the last four chapters that, for each of those human hallmarks, there are many animal precedents or even precursors. Accept for the moment the assumption that the universe contains innumerable other planets on which life evolved. Do not those considerations suggest that some other species on some other planets have also extended such widespread precursors as far as the level of our own intelligence, technical ability, and communication skills? While no other species on Earth is now wondering where else in the universe there exists intelligent life, such species must exist elsewhere. Alas, most human hallmarks lack effects detectable at a distance of many light-years. If there were creatures enjoying art or addicted to drugs on planets orbiting even the nearest stars, we would never know it. But fortunately there are two signs of intelligent beings elsewhere that might be detectable on Earth—space probes and radio signals. We ourselves are already becoming effective at sending out both, so surely other intelligent creatures have mastered the necessary skills. Where, then, are the expected flying saucers? This seems to me one of the greatest puzzles in all of science. Given the billions of stars, and given the abilities that we know did develop in our own species, we ought to be detecting flying saucers or at least radio signals. There is no question about there being billions of stars. What is there about the human species, then, that could explain the missing saucers? Could we really be unique not only on Earth, but also in the accessible universe? In this chapter I shall argue that we can obtain a fresh perspective on our uniqueness by looking carefully at some other well-known creatures here on Earth—woodpeckers!
For a long time, people have asked themselves such questions. Already around 400 BC the philosopher Metrodorus wrote, 'To consider the Earth the only populated world in an infinite space is as absurd as to assert that in an entire field sown with millet, only one grain will grow. Not until 1960, however, did scientists make a serious first attempt to find the answer, by listening (unsuccessfully) for radio transmissions from two nearby stars. In 1974 astronomers at the giant Arecibo radio telescope tried to establish an interstellar dialogue, by beaming a powerful radio signal to the star cluster M13 in the constellation Hercules. The signal described to Hercules' denizens what we earthlings look like, how many of us there are, and where the Earth is located in our solar system. Two years later the search for extraterrestrial life provided the main motivation behind the Viking missions to Mars, whose cost of about a billion dollars dwarfed all the US National Science Foundation's expenditures (since its inception) for classifying the life known to exist on Earth. More recently the US government has decided to spend a further hundred million dollars to detect radio signals from any intelligent beings who might exist outside our solar system. Several spacecraft that we launched are now heading out of our solar system, carrying sound tapes and photographic records of our civilization to inform spacelings who might be encountered.