For similar reasons, it is impossible to forecast the weather accurately, even a few weeks ahead. Yet, despite this apparent absence of causality at the micro-levels of weather, the impossibility of isolating causality in the swirling butterflies ... despite the chaotic nature of meteorology in both the large and the small, weather makes sense. So does a stone tumbling downhill. So does a lot of physics, engineering, and aeronautics: we can build a Boeing 747 that flies reliably. Nevertheless, all of our physical models are rooted in brains that get most of their perceptions wrong.
Shouting at the monkeys in the next tree. That's what brains evolved to do. Not mathematics and physics.
We get ecology and evolution mostly right, but often wrong, for the same reasons. The scenarios we build don't work, they're as false to fact as `weather'. But we can't help building them, and they're useful sufficiently often to be `good enough for government work'.
To underline this point, here's an important evolutionary example. Think of the first land vertebrate, that fish that came out of the water. We have the strongest feeling that if we took a time machine back to the Devonian, when that first important fish was emerging from the sea, there ought to be a moment that we could isolate: `Look, by wriggling out on to the mud that female has escaped that predator, so she's lived to lay her eggs, and some of them will become our ancestors ... If she hadn't got those leggy fins, she wouldn't quite have made it, and we wouldn't be here.'
Grandfather paradox again? Not quite, but we can illuminate the grandfather paradox neatly with this example. Ask yourself what would happen if you killed that fish. Would humanity never have happened? Not at all. By isolating a single event, we have tried mentally to make history follow a thin thread of causality. But we made the Adam-and-Eve mistake: ancestors don't get fewer as you go back, they multiply. You have two parents, four grandparents, maybe only seven great-grand parents, because cousin marriages were commoner then. By the time you've gone back a couple of dozen generations, a significant proportion of all the breeders of that period were your ancestors. That's why everyone finds some famous ancestors when they look - and the fact that famous people were rich and powerful and sexually successful helps too, so that they are reproductively better represented in that generation's descendants.
Note that we said `breeders' and `many'. Nearly all sexually produced creatures don't breed, including humans of most previous generations. Not only are most of the people alive at that previous generation young children who won't survive to breed; many of the apparently successful breeders contribute to lineages that die out before they get to the present day, because they are excluded from the limited ecosystem by more successful lineages as the generations pass.
So when we look at those Devonian fishes, there simply isn't just one that was our ancestor. All of the breeders, a very unsystematic small proportion of the fish population, contributed to the recombining and mutating mix of genes that passed down from those fishes that left the water, through generations of amphibians and mammallike reptiles, into the early mammals, were newly selected to characterise the early primates, and eventually ended up in us. There wasn't a single grandfather fish, or one grandfather primate, no thin line of descent, just as there isn't a thin line of causality leading from a butterfly's wing flap to a hurricane. Nearly any fish you went back and killed would make virtually no difference to history. We'd still be here, but history would have taken a slightly different route to get to us.
But that doesn't mean that history has no important accomplishments.
Some physicists, especially, have argued from this indeterminacy and chaotic influences at all the micro-levels that there is no pattern to history, that Heisenberg uncertainty rules. Wrong. Just because we cannot predict the weather more than about a week ahead, with the best and biggest computers, doesn't mean that there isn't such a thing as weather. Our thin-causal-thread evolutionary scenarios for the emergence of those fishes on to the land don't work, but that doesn't mean we must throw away all ideas of causality in evolution. Any event, when looked at in detail, seems not to have a clear cause, but that just means that our Damasio-minds are not suited to that way of analysing history.
We are much better at totally disregarding all the micro stuff, and making big guesses: I guess it'll be sunny again tomorrow; or I guess that among all those fishes eating each other on the Devonian mudflats, some will escape on to the land. We're confirmed in that guess by finding climbing perch, mudskippers and lots of other separate fish lineages doing exactly that on mudflats today.
The great evolutionary biologist Stephen Jay Gould got this point wrong in Wonderful Life: if evolution ran again, he stated, we would not get people, because of all the tiny chaotic butterflies that determined evolutionary outcomes, so there were no thin causal threads. We disagree: we might not, almost surely would not, get the same primate coming down from the trees, but equivalent major innovations would occur in the new and different lineages. People are good at finding high-level groupings, making analogies and metaphors, arguing from what Aunt Janie does today to what she'll do tomorrow, or did twenty years ago. But we oversimplify when we try to disentangle the maze of tiny causalities that lies behind any historical event, because we can't handle that kind of complexity.
So, even though all of the causality happens at the micro-level, and we can't analyse it except in terms of tens of particles interacting when it's really billions, this isn't what it's about. It's like the early twentieth-century physicists telling us that the dining-room table wasn't really there, it was nearly all empty space, and that concepts like `hard' and `brown' had no place in the physicist's view of the world. So much the worse for the physicist. Did he really not eat his dinner off just such a hard, brown table? And was not his brain designed to do really clever things with abstractions useful in his daily life, like hard and brown, rather than the very peculiarly unuseful concepts of atoms, nuclei, and so on?
On the contrary, our brains are excellent at all the higher-level judgements they're called on to make, especially in a world that is full of hard, brown tables, doors, houses, trees to make them out of, and other people to help us or compete with us. But nearly all human brains are poor when it comes to the physics of atoms and the micro-world.
Back to history. We `make sense' of large movements like the Enlightenment, democracy in ancient Athens, the Tudors; but we know that if we were to look at all the small-scale interactions, they would make little sense against the comprehensible backdrop. That is precisely why historical novels can be so fascinating, and why The Three Musketeers didn't really affect Cardinal Richelieu and all the important people in seventeenth-century France. Nevertheless, we greatly enjoy the fiction that makes sense of the great movements by tying them down to the motives and nobility of a few people like D'Artagnan, with whom we can identify. The sequels Ten Years After and Twenty Years Later intrigued some of us, as Dumas found that he was on to a good thing and turned out more of the same. Some of us, at least, then found that Athos's nobility rang increasingly false, and Porthos's good humour was boring, while Aramis's religiosity wore very thin as the years rushed by. The initial idea wedged into the history we knew, it was consistent and provided colourful incident. But the later money-spinners were increasingly at odds with how we knew history worked.