Notice that Pinker’s theory predicts that the women should hover around the buyers, whereas Miller’s theory predicts they should hover around the starving artists themselves.
To these ideas I’ll add two more. To understand them you need to consider thirty-thousand-year-old cave art from Lascaux, France. These cave-wall images are hauntingly beautiful even to the modern eye. To achieve them, the artists must have used some of the same aesthetic laws used by modern artists. For example, the bisons are mostly depicted as outline drawings (isolation), and bison-like characteristics such as small head and large hump are grossly exaggerated. Basically, it’s a caricature (peak shift) of a bison created by unconsciously subtracting the average generic hoofed quadruped from a bison and amplifying the differences. But apart from just saying, “They made these images just to enjoy them,” can we say anything more?
Humans excel at visual imagery. Our brains evolved this ability to create an internal mental picture or model of the world in which we can rehearse forthcoming actions, without the risks or the penalties of doing them in the real world. There are even hints from brain-imaging studies by Harvard University psychologist Steve Kosslyn showing that your brain uses the same regions to imagine a scene as when you actually view one.
But evolution has seen to it that such internally generated representations are never as authentic as the real thing. This is a wise bit of self-restraint on your genes’ part. If your internal model of the world were a perfect substitute, then anytime you felt hungry you could simply imagine yourself at a banquet, consuming a feast. You would have no incentive to find real food and would soon starve to death. As the Bard said, “You cannot cloy the hungry edge of appetite by bare imagination of a feast.”
Likewise, a creature that developed a mutation that allowed it to imagine orgasms would fail to pass on its genes and would quickly become extinct. (Our brains evolved long before porn videos, Playboy magazine, and sperm banks.) No “imagine orgasm” gene is likely to make a big splash in the gene pool.
Now what if our hominin ancestors were worse than us at mental imagery? Imagine they wanted to rehearse a forthcoming bison or lion hunt. Perhaps it was easier to engage in realistic rehearsal if they had actual props, and perhaps these props are what we today call cave art. They may have used these painted scenes in much the way that a child enacts imaginary fights between his toy soldiers, as a form of play to educate his internal imagery. Cave art could also have been used for teaching hunting skills to novices. Over several millennia these skills would become assimilated into culture and acquired religious significance. Art, in short, may be nature’s own virtual reality.
Finally, a fourth, less prosaic reason for art’s timeless appeal may be that it speaks an oneiric, right-hemisphere-based language that is unintelligible—alien, even—to the more literal-minded left hemisphere. Art conveys nuances of meaning and subtleties of mood that can only be dimly apprehended or conveyed through spoken language. The neural codes used by the two hemispheres for representing higher cognitive functions may be utterly different. Perhaps art facilitates communion between these two modes of thinking that would otherwise remain mutually unintelligible and walled off. Perhaps emotions also need a virtual reality rehearsal to increase their range and subtlety for future use, just as we engage in athletics for motor rehearsal and frown over crossword puzzles or ponder over Gödel’s theorem for intellectual invigoration. Art, in this view, is the right hemisphere’s aerobics. It’s a pity that it isn’t emphasized more in our schools.
SO FAR, WE have said very little about the creation—as opposed to the perception—of art. Steve Kosslyn and Martha Farah of Harvard have used brain-imaging techniques to show that creatively conjuring up a visual image probably involves the inner (ventromedial cortex) portion of the frontal lobes. This portion of the brain has back-and-forth connections with parts of the temporal lobes concerned with visual memories. A crude template of the desired image is initially evoked through these connections. Back-and-forth interactions between this template and what’s being painted or sculpted lead to progressive embellishments and refinements of the painting, resulting in the multiple, stage-by-stage mini-“Ahas!” we spoke of earlier. When the self-amplifying echoes between these layers of visual processing reach a critical volume, they get delivered as a final, kick-ass “Aha!” to reward centers such as the septal nuclei and the nucleus accumbens. The artist can then relax with her cigarette, cognac, and muse.
Thus the creative production of art and the appreciation of art may be tapping into the same pathways (except for the frontal involvement in the former). We have seen that faces and objects enhanced through peak shifts (caricatures, in other words) hyperactivate cells in the fusiform gyrus. Overall scene layout—as in landscape paintings—probably requires the right inferior parietal lobule, whereas “metaphorical,” or conceptual aspects of art might require both the left and right angular gyri. A more thorough study of artists with damage to different portions of either the right or left hemisphere might be worthwhile—especially bearing in mind our laws of aesthetics.
Clearly we have a long way to go. Meanwhile, it’s fun to speculate. As Charles Darwin said in his Descent of Man,
false facts are highly injurious to the progress of science, for they often endure long; but false views, if supported by some evidence, do little harm, for everyone takes a salutary pleasure in proving their falseness; and when this is done, one path toward errors is closed and the road to truth is often at the same time opened.
CHAPTER 9
An Ape with a Souclass="underline" How Introspection Evolved
Hang up philosophy! Unless philosophy can make a Juliet…
—WILLIAM SHAKESPEARE
JASON MURDOCH WAS AN INPATIENT AT A REHABILITATION CENTER in San Diego. After a serious head injury in a car accident near the Mexican border, he had been in a semiconscious state of vigilant coma (also called akinetic mutism) for nearly three months before my colleague, Dr. Subramaniam Sriram, examined him. Because of damage to the anterior cingulate cortex in the front of his brain, Jason couldn’t walk, talk, or initiate actions. His sleep-wake cycle was normal but he was bedridden. When awake he seemed alert and conscious (if that’s the right word—words lose their resolving power when dealing with such states). He sometimes had slight “ouch” withdrawal in response to pain, but not consistently. He could move his eyes, often swiveling them around to follow people. Yet he couldn’t recognize anyone—not even his parents or siblings. He could not talk or comprehend speech, nor could he interact with people meaningfully.
But if his father, Mr. Murdoch, phoned him from next door, Jason suddenly became alert and talkative, recognizing his dad and engaging him in conversation. That is until Mr. Murdoch went back into the room. Then Jason lapsed back into his semiconscious “zombie” state. Jason’s cluster of symptoms has a name: telephone syndrome. He could be made to flip back and forth between the two states, depending on whether his father was directly in his presence or not.
Think of what this means. It is almost as if there are two Jasons trapped inside one body: the Jason on the phone, who is fully alert and conscious, and the Jason in person, who is a barely conscious zombie. How can this be? The answer has to do with how the accident affected the visual and auditory pathways in Jason’s brain. To a surprising extent, the activity of each pathway—vision and hearing—must be segregated all the way up to the critically important anterior cingulate. This collar of tissue, as we shall see, is where your sense of free will partly originates.