Выбрать главу

Тем не менее, за их холодным спокойствием черные дыры скрывают величайшие резервуары хаоса, которые когда-либо знала вселенная. Среди всех физических систем заданного размера с любым возможным составом черные дыры содержат максимально возможную энтропию. Вспомним из Главы 6, что один грубый путь раздумий об этом следует непосредственно из определения энтропии как меры числа перестановок внутренних составляющих объекта, которые не влияют на его внешний облик. Если применить это к черным дырам, то даже если мы не можем сказать, что на самом деле представляют собой их составляющие, – поскольку мы не знаем, что происходит, когда материя проваливается в центр черной дыры, – мы можем сказать с уверенностью, что перестановки этих составляющих будут влиять на массу, заряд или вращение черной дыры не больше, чем перестановки страниц Войны и Мира будут влиять на вес книги. А поскольку масса, заряд и вращение полностью определяют лицо, которое черная дыра показывает внешнему миру, все такие манипуляции пройдут незамеченными, и мы можем сказать, что черная дыра имеет максимальную энтропию.

Более того, при этих условиях вы можете представить превышение энтропии черной дыры над всеми остальными объектами следующим простым образом. Постройте полую сферу того же размера, как и данная черная дыра и заполните ее газом (водород, гелий, углекислый газ, что угодно), которому вы позволите распространиться по внутренности сферы. Чем больше газа вы накачаете, тем больше будет энтропия, поскольку большее число составляющих означает большее количество возможных перестановок. Вы можете тогда предположить, что если вы продолжаете качать и качать, энтропия газа будет неизменно возрастать и в конечном счете превысит энтропию данной черной дыры. Это хитрая стратегия, но ОТО показывает, что она проваливается. Чем больше газа вы накачали, тем более массивным становится содержимое сферы. И перед тем, как вы достигнете энтропии черной дыры равного размера, нарастающая масса внутри сферы достигнет критической величины, которая заставит сферу и ее содержимое стать черной дырой. Нет никакого пути обойти это. Черная дыра имеет монополию на максимальный беспорядок.

Что если вы попытаетесь еще больше повысить энтропию в пространстве внутри самой черной дыры, постоянно закачивая все больше газа? Энтропия на самом деле продолжит возрастать, но вы измените правила игры. По мере втягивания материи через ненасытный горизонт событий черной дыры, не только возрастает энтропия черной дыры, но также и увеличивается ее размер. Размер черной дыры пропорционален ее массе, так что когда вы свалите больше материи в дыру, она станет тяжелее и больше. Таким образом, раз уж вы максимизировали энтропию в области пространства путем создания черной дыры, любые попытки дальше повысить энтропию в этой области будут неудачными. Область просто не может содержать больше беспорядка. Она насытилась энтропией. Чтобы вы ни делали, закачиваете ли вы газ или бросаете внутрь Хаммер, вы обязательно заставите черную дыру расти, и потому занимать больший пространственный регион. Таким образом, количество энтропии, содержащееся в черной дыре, не только говорит нам о фундаментальном свойстве черной дыры, но также говорит нам о чем-то фундаментальном про само пространство: максимальная энтропия, которая может быть втиснута в область пространства, – любую область пространства, везде и всегда, – равна энтропии, содержащейся в черной дыре, чей размер равен рассматриваемой области.

Итак, как много энтропии содержит черная дыра заданного размера? В этом месте вещи становятся интересными. Рассуждая интуитивно, начнем с чего-то, что более легко визуализировать, вроде воздуха в пластиковом контейнере. Если вы объедините два таких контейнера, удвоится общий объем и число молекул воздуха, так что вы можете предположить, что вы удвоили энтропию. Детальные расчеты подтверждают[1] это заключение и показывают, что при прочих равных (при неизменной температуре, плотности и так далее) энтропия привычной физической системы пропорциональна ее объему. Естественное следующее предположение заключается в том, что такое же заключение будет также применимо к менее привычным вещам вроде черных дыр, приводя нас к ожиданию, что энтропия черной дыры также пропорциональна ее объему.