Например, почему электромагнитная радиация путешествует в виде расширяющихся вовне волн, но не в виде сходящихся внутрь волн, даже если оба вида волн являются совершенно прекрасными решениями уравнений электромагнетизма Максвелла? Ну, потому, что наша вселенная имеет низкоэнтропийные, когерентные, упорядоченные источники таких расходящихся волн – звезды и электрические лампочки, чтобы назвать парочку, – и существование этих упорядоченных источников происходит из даже еще более упорядоченного окружения в отправной точке вселенной, как обсуждается в главном тексте. Психологическая стрела времени тяжелее для обращения, поскольку тут очень много от микропсихических основ человеческого мышления, которые нам еще предстоит понять. Но большой прогресс был сделан в понимании стрелы времени, когда она подходит к компьютерам – предприятие, завершение и затем производство записей вычислений является основой вычислительной последовательности, чьи энтропийные свойства хорошо поняты (как исследовано Чарлзом Беннетом, Рольфом Ландауером и другими) и подходят прямо ко второму закону термодинамики. Таким образом, если человеческое мышление может быть связано с процессами вычисления, может быть применено сходное термодинамическое объяснение. Отметим также, что асимметрия, связанная с тем фактом, что вселенная расширяется, а не стягивается, связана со стрелой времени, которую мы исследовали, но логически отличается от нее. Если расширение вселенной замедлится, остановится, а затем повернет к сжатию, стрела времени все еще будет смотреть в том же направлении. Физические процессы (разбивание яиц, старение людей и так далее) все еще будут происходить в обычном направлении, даже если расширение вселенной сменится сжатием.
(обратно)19. Для склонного к математике читателя отметим, что, когда мы делаем такой вид вероятностного утверждения, мы предполагаем особую меру вероятности: такую, которая однородна относительно всех микросостояний, совместимых с тем, что мы видим прямо сейчас. Имеются, конечно, другие меры, которые мы могли бы привлечь. Например, Дэвид Альберт (David Albert in Time and Chance) отстаивает использование вероятностной меры, которая однородна по всем микросостояниям, совместимым с тем, что мы видим сейчас, и с тем, что он называет гипотезой прошлого – очевидным фактом, что вселенная началась с низкоэнтропийного состояния. Используя эту меру, мы удаляем из рассмотрения все истории, кроме тех, которые совместимы с низкоэнтропийным прошлым, подтверждаемым нашей памятью, записями и космологическими теориями. При таком способе мышления нет вероятностных загадок по поводу вселенной с низкой энтропией; она начала этот путь, по предположению, с вероятностью 1. Имеется все еще та же гигантская головоломка, почему она начала таким образом, даже если это и не озвучивается в вероятностном контексте.
(обратно)20. Вы можете попытаться утверждать, что известная вселенная имела очень рано низкую энтропию просто потому, что она была намного меньше по размеру, чем сегодня, а потому – подобно книге с несколькими страницами – допускала немного меньше перестановок своих составляющих. Но для нее самой это фокус не проходит. Даже малая вселенная может иметь гигантскую энтропию. Например, одна из возможных (хотя маловероятных) судеб для нашей вселенной заключается в том, что текущее расширение однажды остановится, повернется, и вселенная станет сжиматься, закончив в так называемом Большом хрусте. Расчеты показывают, что даже если размер вселенной будет уменьшаться во время фазы сжатия, энтропия будет продолжать расти, что демонстрирует, что малый размер не гарантирует малой энтропии. В Главе 11, однако, мы увидим, что малый начальный размер вселенной играет роль в нашем сегодняшнем, лучшем объяснении низкоэнтропийного начала.
(обратно)