Глава 7
1. Хорошо известно, что уравнения классической физики не могут быть решены точно, если вы изучаете движение трех или более взаимодействующих тел. Так что, даже в классической физике любые реальные предсказания о движении большого набора частиц будут с неизбежностью приблизительными. Суть, однако, в том, что тут не имеется фундаментального предела, насколько точно может быть это приближение. Если бы мир управлялся классической физикой, тогда с помощью все более мощных компьютеров и все более точных начальных данных относительно положений и скоростей мы могли бы подобраться все ближе к точному ответу.
(обратно)2. В конце Главы 4 отмечено, что результат Белла, Аспекта и других не отменяет возможности, что частицы всегда имеют определенные положения и скорости, даже если мы никогда не можем определить такие свойства одновременно. Более того, версия квантовой механики Бома явно реализовывает такую возможность. Таким образом, хотя широко распространенное мнение, что электрон не имеет положения до измерения, является стандартной особенностью общепринятого подхода к квантовой механике, строго говоря, это слишком сильно для общего утверждения. Однако, имеем в виду, что в подходе Бома, как мы будем обсуждать далее в этой главе, частицы "сопровождаются" вероятностными волнами; это означает, теория Бома всегда привлекает частицы и волны, тогда как стандартный подход воображает дополнительность, которая грубо может быть обобщена как частицы или волны. Таким образом, заключение, на которое мы указываем, – что квантовомеханическое описание прошлого будет совершенно неполным, если мы говорили исключительно о частицах, двигавшихся от одной точки в пространстве в каждый определенный момент во времени (что мы должны были делать в классической физике), – тем не менее, верно. В общепринятом подходе к квантовой механике мы также должны включить изобилие других положений, которые частица могла бы занимать в любой данный момент, тогда как в подходе Бома мы должны также включить "пробную" волну, объект, который также распределяется по изобилию других положений. (Подготовленный читатель должен заметить, что пробная волна есть та же волновая функция общепринятой квантовой механики, хотя ее воплощение в теории Бома несколько отличается). Чтобы избежать бесконечных оговорок, последующую дискуссию будем проводить с точки зрения общепринятой квантовой механики (более широко используемого подхода), оставив ссылки на Бома и другие подходы до последней части главы.
(обратно)3. Для математического, но и в высшей степени педагогического рассмотрения см. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (Burr Ridge, 111.; McGraw-Hill Higher Education, 1965).
(обратно)4. Вы можете попытаться привлечь дискуссию Главы 3, в которой мы изучили, что при скорости света время останавливается, чтобы доказать, что с точки зрения фотона все моменты времени есть один и тот же момент, так что фотон "знает", как установлен выключатель детектора, когда он проходет через лучевой разветвитель. Однако, эти эксперименты могут быть проведены и с другими видами частиц, такими как электроны, которые двигаются медленнее света, а результаты останутся неизменными. Таким образом, эта точка зрения не освещает существенной физики.
(обратно)5. Экспериментальные настройки, а также реально подтвержденные экспериментальные результаты, обсуждались исходя из Y. Kim, R. Yu, S. Kulik, Y. Shih, M. Scully, Phys. Rev. Lett, vol. 84, no. 1, pp. 1-5.
(обратно)6. Квантовая механика также может базироваться на эквивалентном уравнении, представленном в другой форме (известной как матричная механика) Вернером Гейзенбергом в 1925. Для склонного к математике читателя уравнение Шредингера есть: НΨ(x,t) = ihdΨ(x,t)/dt, где Н обозначает гамильтониан, Ψ обозначает волновую функцию, а h есть постоянная Планка.
(обратно)7. Подготовленный читатель отметит, что я пропустил тут одно тонкое место. А именно, мы должны были взять комплексно сопряженную волновую функцию частицы, чтоб обеспечить, что она решает обращенную во времени версию уравнения Шредингера. Это означает, что описанный в комментарии 2 к Главе 6 оператор Т действует на волновую функцию Ψ(x,t) и отображает ее в Ψ*(x,–t). Это не имеет существенного влияния на обсуждение в тексте.
(обратно)