Выбрать главу

8. Бом на самом деле заново открыл и разработал дальше подход, который восходит к принцу Луи де Бройлю, так что этот подход иногда называют подходом де Бройля-Бома.

(обратно)

9. Для склонного к математике читателя заметим, что подход Бома локален в конфигурационном пространстве, но определенно нелокален в реальном пространстве. Изменения волновой функции в одном месте в реальном пространстве немедленно оказывают влияние на частицы, расположенные в других, удаленных местах.

(обратно)

10. Для исключительно ясного обсуждения подхода Жирарди-Римини-Вебера и его применения к пониманию квантового запутывания см. J. S. Bell, "Are There Quantum Jumps?" in Speakable and Unspeakable in Quantum Mechanics (Cambridge, Eng.: Cambridge University Press, 1993).

(обратно)

11. Некоторые физики рассматривают вопросы из этого списка как не относящиеся к делу и являющиеся продуктом ранней путаницы в отношении квантовой механики. Волновая функция, утверждает эта точка зрения, является просто теоретическим средством, чтобы делать (вероятностные) предсказания, и не должна соответствовать никакой, кроме математической, реальности (точка зрения, которую иногда называют подходом "Заткнись и вычисляй", поскольку он поощряет использовать квантовую механику и волновые функции, чтобы делать предсказания, не задумываясь сильно о том, что на самом деле означают и делают волновые функции). Вариант этой темы утверждает, что волновые функции никогда на самом деле не коллапсируют, но что взаимодействия с окружающей средой делают кажущимся такой коллапс. (Мы коротко обсудим версию такого подхода). Я симпатизирую этим идеям и, фактически, строго верю, что рано или поздно мы будем обходиться без услуг понятия коллапса волновой функции. Но я не нахожу первый подход удовлетворительным, так же я не готов отказаться от понимания, что происходит в мире, когда мы "не смотрим", а второй подход – поскольку, на мой взгляд, это правильное направление, – требует дальнейших математических разработок. Основной момент в том, что измерение вызывает нечто, что есть, или похоже на или маскируется под коллапс волновой функции. Или через лучшее понимание влияния окружения, или через некоторые другие подходы, которые еще должны быть предложены, этот явный эффект требует рассмотрения, а не просто выбрасывания из головы.

(обратно)

12. Имеются другие спорные проблемы, связанные с многомировой интерпретацией, которые уходят дальше ее очевидной экстравагантности. Например, имеются технические проблемы определения понятия вероятности в контексте, который содержит бесконечное число копий каждого из наблюдателей, чьи измерения, как предполагается, подвержены этим вероятностям. Если данный наблюдатель на самом деле является одной из многих копий, в каком смысле мы можем сказать, что он или она имеет особую вероятность измерить этот или тот результат? Кто на самом деле есть "он" или "она"? Каждая копия наблюдателя будет измерять – с вероятностью 1 – любой результат, какой бы ни был получен для особой копии вселенной, в которой он или она находится, так что полная вероятностная схема требует (и требовала, и продолжает требовать) осторожной проверки в многомировой схеме. Более того, более техническое замечание, склонный к математике читатель осознает, что в зависимости от того, насколько точно определяются многие миры, может потребоваться выбор преимущественного собственного базиса. Но как должен быть выбран этот собственный базис? Была масса дискуссий и еще больше статей по этим вопросам, но на сегодняшний день нет универсально принятой резолюции. Коротко обсужденный подход, базирующийся на декогеренции, частично проясняет эти проблемы и предлагает особый взгляд на проблему выбора собственного базиса.

(обратно)

13. Подход Бома или де Бройля-Бома никогда не получал широкого внимания. Возможно, одна из причин этого, как обратил внимание Джон Белл в своей статье "The Impossible Pilot Wave," в сборнике Speakable and Unspeakable in Quantum Mechanics, что ни де Бройль, ни Бом особенно не испытывали нежных чувств к тому, что сами разработали. Но еще раз, как указал Белл, подход де Бройля-Бома намного превзошел неопределенность и субъективность большинства стандартных подходов. Если нет других причин, даже если подход неправильный, стоит знать, что частицы могут иметь определенные положения и определенные скорости во все времена (но вне нашей способности их измерить, даже в принципе) и все еще полностью соответствовать предсказаниям стандартной квантовой механики – неопределенность и все остальное. Другой аргумент против подхода Бома тот, что нелокальность в этой схеме более "суровая", чем в стандартной квантовой механике. При этом она означает, что подход Бома имел нелокальные взаимодействия (между волновой функцией и частицей) как центральный элемент теории с самого начала, тогда как в квантовой механике нелокальность более глубоко скрыта и появляется только через нелокальные корреляции между далеко разнесенными измерениями. Но, как доказывали сторонники этого подхода, раз уж нечто скрыто, оно от этого не станет меньше присутствовать и, более того, так как стандартный подход находится в неопределенности относительно проблемы квантового измерения, – самое место, где нелокальнось проявляется, – однажды, когда проблема будет полностью решена, нелокальность в итоге может и не быть столь скрытой. Другие доказывали, что имеются препятствия, чтобы сделать релятивистскую версию подхода Бома, хотя прогресс на этом фронте так же был сделан (см., например, John Bell, Beables for Quantum Field Theory в отмеченном выше сборнике). Так что определенно стоит держать этот альтернативный подход в уме, хотя бы только как контраст против опрометчивых заключений о том, что квантовая механика неизбежно в себя включает. Для склонного к математике читателя прекрасное рассмотрение теории Бома и проблем квантового запутывания можно найти в книге Tim Maudlin, Quantum Non-locality and Relativity (Maiden, Mass.: Blackwell, 2002).

(обратно)