14. Для детального, хотя и формального обсуждения стрелы времени в целом и роли декогерентности в частности, см. H. D. Zeh, The Physical Basis of the Direction of Time (Heidelberg: Springer, 2001).
(обратно)15. Именно чтобы дать вам ощущение, как быстро наступает декогерентность – как быстро влияние окружающей среды подавляет квантовую интерференцию и при этом приводит квантовые вероятности к привычным классическим, – приведем несколько примеров. Числа приблизительны, но смысл, который они передают, ясен. Волновая функция частички пыли, плавающей в вашей жилой комнате и бомбардируемой дрожаниями молекул воздуха, будет декогерентной через примерно миллиардную от миллиардной от миллиардной от миллиардной (10–36) доли секунды. Если частичка пыли содержится в совершенной вакуумной камере и подвергается только взаимодействиям с солнечным светом, ее волновая функция будет декогерентной чуть медленее, чем за тысячную от миллиардной от миллиардной (10–21) доли секунды. И если частичка пыли плавает в темнейших глубинах пустого пространства и подвергается только взаимодействиям с реликтовыми микроволновыми фотонами от Большого взрыва, ее волновая функция будет декогерентной примерно за миллионную долю секунды. Эти числа экстремально малы, что показывает, что декогерентизация для чего-то даже столь мельчайшего, как частица пыли, происходит очень быстро. Для более крупных объектов декогерентизация происходит еще быстрее. Потому не удивительно, что даже если наша вселенная квантовая, мир вокруг нас выглядит так, как он выглядит. (См., например, E. Joos, "Elements of Environmental Decoherence," in Decoherence: Theoretical, Experimental, and Conceptual Problems, Ph. Blanchard, D. Giulini, E. Joos, C. Kiefer, I.-O. Stamatescu, eds. [Berlin: Springer, 2000]).
(обратно)Глава 8
1. Чтобы быть более точным, симметрия между законами в Коннектикуте и законами в Нью-Йорке использует как трансляционную симметрию, так и вращательную симметрию. Когда вы выступаете в Нью-Йорке, вы не только изменили свое положение из Коннектикута, но, более чем вероятно, вы предприняли ваше выступление в некотором ином направлении (запад вместо севера, возможно), чем во время подготовки.
(обратно)2. Законы движения Ньютона обычно описываются как применимые для "инерциальных наблюдателей", но если более пристально посмотреть, как такие наблюдатели определяются, получается циклическая ситуация: инерциальные наблюдатели это те наблюдатели, для которых действуют законы Ньютона. Хороший способ подумать о том, что на самом деле происходит, тот, что законы Ньютона притягивают наше внимание к большому и особенно удобному классу наблюдателей: к тем, чье описание движения полностью и количественно подходит под ньютоновскую схему. По определению это и есть инерциальные наблюдатели. На практике инерциальные наблюдатели это те, на кого не действуют силы любого вида, – это означает, наблюдатели, которые не испытывают ускорения. ОТО Эйнштейна, в отличие от этого, применима ко всем наблюдателям, не зависимо от состояния их движения.
(обратно)3. Если бы мы жили в эпоху, во время которой все изменения были бы остановлены, мы бы не ощущали течения времени (все функции тела и мозга должны были бы быть также заморожены). Но означало бы это, что пространственно-временной блок на Рис. 5.1 подошел к концу, или, напротив, он продолжался бы без изменений вдоль оси времени, – что означает, должно ли время было бы подойти к концу или должно было бы еще существовать в некотором формальном, обобщенном смысле, – гипотетический вопрос, который как тяжел для ответа, так и в значительной степени не имеет отношения ко всему, что мы можем измерять или переживать. Заметим, что эта гипотетическая ситуация отличается от состояния максимального беспорядка, в котором энтропия не может больше расти, но микроскопические изменения вроде движения туда-сюда молекул газа все еще имеют место.
(обратно)